• Title/Summary/Keyword: 해상플랜트

Search Result 179, Processing Time 0.022 seconds

Underwater mobile communication scheme based on the direct sequence spread spectrum transmission using Doppler estimation and its sea trial results with the pseudo-moving transmission (도플러 추정을 적용한 직접수열 대역확산 전송 기반 수중 이동통신 방법 및 가상 이동신호를 이용한 해상시험 결과)

  • Kim, Seung-Geun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.1
    • /
    • pp.16-29
    • /
    • 2022
  • This paper presents a Doppler shift estimation method and signal processing schemes for Direct Sequence Spread Spectrum (DSSS) transmission to overcome the Doppler shift due to the moving of the underwater communication unit. The proposed method estimates a Doppler shift via 2 step procedures using the preamble with the two 64-length Frank sequences which has a good self-correlation characteristic and is insensitive to the Doppler shift. Furthermore, a packet of DSSS underwater mobile communication and a RAKE receiver are designed using the proposed Doppler shift estimation method. Due to the modulation scheme of the designed DSSS underwater mobile communication using Differential-Quadrature Phase Shift Keying (DQPSK) for the data symbol transmission, the RAKE receiver dose not need a phase tracking and easily makes coherent signals among the combining RAKE branches. The designed RAKE receiving scheme including the proposed Doppler shift estimation method successfully decides information data using the DSSS signal transmitted from the pseudo-moving transmitter with velocity upto about 17.5 m/s.

Waveguide invariant-based source-range estimation in shallow water environments featuring a pit (웅덩이가 있는 천해 환경에서의 도파관 불변성 기반의 음원 거리 추정)

  • Gihoon Byun;Donghyeon Kim;Sung-Hoon Byun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.4
    • /
    • pp.466-475
    • /
    • 2024
  • Matched-Field Processing (MFP) is a model-based approach that requires accurate knowledge of the ocean environment and array geometry (e.g., array tilt) to localize underwater acoustic sources. Consequently, it is inherently sensitive to model mismatches. In contrast, the waveguide invariant-based approach (also known as array invariant) offers a simple and robust means for source-range estimation in shallow waters. This approach solely exploits the beam angles and travel times of multiple arrivals separated in the beam-time domain, requiring no modeling of the acoustic fields, unlike MFP. This paper extends the waveguide invariant-based approach to shallow water environments featuring a shallow pit, where the waveguide invariant is not defined due to the complex bathymetry. An in-depth performance analysis is conducted using experimental data and numerical simulations.

Estimation of Soil Moisture Using Sentinel-1 SAR Images and Multiple Linear Regression Model Considering Antecedent Precipitations (선행 강우를 고려한 Sentinel-1 SAR 위성영상과 다중선형회귀모형을 활용한 토양수분 산정)

  • Chung, Jeehun;Son, Moobeen;Lee, Yonggwan;Kim, Seongjoon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.515-530
    • /
    • 2021
  • This study is to estimate soil moisture (SM) using Sentinel-1A/B C-band SAR (synthetic aperture radar) images and Multiple Linear Regression Model(MLRM) in the Yongdam-Dam watershed of South Korea. Both the Sentinel-1A and -1B images (6 days interval and 10 m resolution) were collected for 5 years from 2015 to 2019. The geometric, radiometric, and noise corrections were performed using the SNAP (SentiNel Application Platform) software and converted to backscattering coefficient of VV and VH polarization. The in-situ SM data measured at 6 locations using TDR were used to validate the estimated SM results. The 5 days antecedent precipitation data were also collected to overcome the estimation difficulty for the vegetated area not reaching the ground. The MLRM modeling was performed using yearly data and seasonal data set, and correlation analysis was performed according to the number of the independent variable. The estimated SM was verified with observed SM using the coefficient of determination (R2) and the root mean square error (RMSE). As a result of SM modeling using only BSC in the grass area, R2 was 0.13 and RMSE was 4.83%. When 5 days of antecedent precipitation data was used, R2 was 0.37 and RMSE was 4.11%. With the use of dry days and seasonal regression equation to reflect the decrease pattern and seasonal variability of SM, the correlation increased significantly with R2 of 0.69 and RMSE of 2.88%.

Monitoring System of Rock Mass Displacement and Temperature Variation for KURT using Optical Sensor Cable (광섬유센서케이블을 이용한 지하연구시설의 지반변위 및 온도변화 감시시스템 구축)

  • Kim, Kyung-Su;Bae, Dae-Seok;Koh, Yong-Kwon;Kim, Jung-Yul
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • The optical fiber cable acting as a sensor was embedded in the underground research tunnel and portal area in order to monitor their stability and the spatial temperature variation. This system includes two types of sensing function to monitor the distributed strain and temperature along the line, where sensor cable is installed, not a point sensing. According to the results of one year monitoring around the KURT, there is no significant displacement or movement at the tunnel wall and portal slope. However, it would be able to aware of some phenomena as an advance notice at the tunnel wall which indicates the fracturing in rockmass and shotcrete fragmentation before rock falls accidently as well as movement of earth slope. The measurement resolution for rock mass displacement is 1 mm per 1 m and it covers 30 km length with every 1m interval in minimum. In temperature, the cable measures the range of $-160{\sim}600^{\circ}C$ with $0.01^{\circ}C$ resolution according to the cable types. This means that it would be applicable to monitoring system for the safe operation of various kinds of facilities having static and/or dynamic characteristics, such as chemical plant, pipeline, rail, huge building, long and slim structures, bridge, subway and marine vessel. etc.

Process Simulation of the BOG Re-Liquefaction system for a Floating LNG Power Plant using Commercial Process Simulation Program (상용 공정시뮬레이션 프로그램을 이용한 부유식 LNG 발전설비의 BOG 회수시스템 공정모사)

  • Seo, Ju-Wan;Yoo, Seung-Yeol;Lee, Jae-Chul;Kim, Young-Hun;Lee, Soon-Sup
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.732-741
    • /
    • 2020
  • Environmental regulations have recently been strengthened. Consequently, floating LNG(Liquefied Natural Gas) power plants are being developed, which are new power generation plants that generate electricity by utilizing LNG. A floating LNG power plant generates BOG(Boil-Off Gas) during its operation, and the system design of such a plant should be capable of removing or re-liquefying BOG. However, the design of an offshore plant differs according to the marine requirements. Hence, a process simulation model of the BOG re-liquefaction system is needed, which can be continuously modified to avoid designing the floating LNG power plant through trial and error. In this paper, to develop a model appropriate for the floating LNG power plant, a commercial process simulation program was employed. Depending on the presence of refrigerants, various BOG re-liquefaction systems were modeled for comparing and analyzing the re-liquefaction rates and liquid points of BOG. Consequently, the BOG re-liquefaction system model incorporating nitrogen refrigerants is proposed as the re-liquefaction system model for the floating LNG power plant.

Speed Control of Marine Gas Turbine Engine using Nonlinear PID Controller (비선형 PID 제어기를 이용한 선박용 가스터빈 엔진의 속도 제어)

  • Lee, Yun-Hyung;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.39 no.6
    • /
    • pp.457-463
    • /
    • 2015
  • A gas turbine engine plays an important role as a prime mover that is used in the marine transportation field as well as the space/aviation and power plant fields. However, it has a complicated structure and there is a time delay element in the combustion process. Therefore, an elaborate mathematical model needs to be developed to control a gas turbine engine. In this study, a modeling technique for a gas generator, a PLA actuator, and a metering valve, which are major components of a gas turbine engine, is explained. In addition, sub-models are obtained at several operating points in a steady state based on the trial running data of a gas turbine engine, and a method for controlling the engine speed is proposed by designing an NPID controller for each sub-model. The proposed NPID controller uses three kinds of gains that are implemented with a nonlinear function. The parameters of the NPID controller are tuned using real-coded genetic algorithms in terms of minimizing the objective function. The validity of the proposed method is examined by applying to a gas turbine engine and by conducting a simulation.

Experimental Study on Flow Direction of Fire Smoke in DC Electric Fields (DC 전기장 내에서 발생하는 화재연기 진행 방향에 대한 실험적 연구)

  • Park, Juwon;Kim, Youngmin;Seong, Seung Hun;Park, Sanghwan;Kim, Ji Hwan;Chung, Yongho;Yoon, Sung Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.675-682
    • /
    • 2021
  • Fire accidents on land and at sea can cause serious casualties; specifically, owing to the nature of marine plants and ships, the mortality rate at sea from suffocation in confined spaces is significantly higher than that on land. To prevent such cases of asphyxiation, it is essential to install ventilation fans that can outwardly direct these toxic gases from fires; however, considering the scale of marine fires, the installation of large ventilation fans is not easy owing to the nature of marine structures. Therefore, in this study, we developed a new concept for fire safety technology to control toxic gases generated by fires from applied direct current (DC) electric fields. In the event of a fire, most flames contain large numbers of positive and negative charges from chemi-ionization, which generates an "ionic wind" by Lorentz forces through the applied electric fields. Using these ionic winds, an experimental study was performed to artificially control the fire smoke caused by burning paper and styrofoam, which are commonly used as insulation materials in general buildings and ships. The experiments showed that a fire smoke could be artificially controlled by applying a DC voltage in excess of ±5 kV and that relatively effective control was possible by applying a negative voltage rather than a positive voltage.

A Study on the Utilization of SAR Microsatellite Constellation for Ship Detection (선박탐지를 위한 초소형 SAR 군집위성 활용방안 연구)

  • Kim, Yunjee;Kang, Ki-mook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.627-636
    • /
    • 2021
  • Although many studies on ship detection using synthetic aperture radar (SAR) satellite images are being conducted around the world, there are still very few employing SAR microsatellites, as most of the microsatellites are optical satellites. Recently, the ICEYE and Capella Space have embarked on the development of microsatellites with SAR sensor, and similar projects are being initiated globally in line with the flow of the new space era [e.g., for the ICEYE: 18 satellites (~2021); Capella Space: 36 satellites (~2023); and the Coast Guard SAR: 32 satellites in the early development stage]. In preparation for these new systems, it is important to review the SAR microsatellite system and the recent advances in this technology. Accordingly, in this paper, the current status and characteristics of optical and SAR microsatellite constellation operation are described, and studies using them are investigated. In addition, based on the status and characteristics of the representative SAR microsatellites, specifically the ICEYE and Capella systems, methods for using SAR microsatellite data for ship detection applications are described. Our results confirm that the SAR microsatellites operate as a constellation and have the advantages of short revisit cycles and quick provision of high-resolution images. With this technology, we expect SAR microsatellites to contribute greatly to the monitoring a wide-area target vessel, in which the spatiotemporal resolution of the imagery is especially important.

Offshore Platform Installation Simulation Using Real-Time Maneuvering and Operation Simulator (Real-Time 조종 및 작업 시뮬레이터를 활용한 해양구조물 설치 작업 시뮬레이션)

  • Jonghyeon Lee;Solyoung Han;Dong-Woo Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.1
    • /
    • pp.67-75
    • /
    • 2023
  • In this study, the dynamic characteristics of an offshore platform being installed and physical phenomena are analyzed from the perspective of interaction between operation and maneuvering simulation using a real-time Maneuvering & Operation simulator of Shipbuilding & Marine Simulation Center at Tongmyong University. It was simulated to install the semi-submersible drilling rig moored by 8 mooring lines according to a scenario that is similar to it on the real sea, and 4 tug boats for position keeping of the rig and an offshore support vessel for hook-up of the mooring lines were operated. During the simulation, the motion, trajectory, tension of the objects were output in real time, and they were analyzed at each work procedure. This study about the simultaneous simulation of operation and maneuvering showed the detailed motion of the offshore platform and ships on the operation procedure and the interaction between operation and maneuvering in specific environment condition. Also, it confirmed that the simulation can be utilized to determine the possibility of offshore platform installation in specific situations.