• 제목/요약/키워드: 해사, 해양공학

Search Result 44, Processing Time 0.03 seconds

Experimental Study on the Removal of Biofouling from Specimens of Small Ship Constructions Using Water Jet (물 제트를 이용한 소형선박제작 시편의 선체부착생물 제거에 관한 실험적 연구)

  • Seo, Daewon;Oh, Jungkeun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1078-1085
    • /
    • 2022
  • Fouling organisms attached to a ship not only greatly increase the resistance of the ship as they grow on the hull but also cause disturbances in local marine ecosystems as they move with the ship. Accordingly, the International Maritime Organization has started discussing the removal of biofouling and evaluation of cleaning performance to prevent the migration of hull-fouling species. In this study, specimens of FRP(Fiber Reinforced Plastic), HDPE(High Density Polyethylene), and CFRP(Carbon Fiber Reinforced Plastic) materials used for small ship construction were cured in Gyeokpo Port (Jeonlakbuk-do) for about 80 days. Then, attached organism removal experiments were performed using a water jet nozzle. The results show that seaweeds, such as laver, were removed when the distance between the nozzle and the specimen was 1.8 cm and the pressure was 100 bar. Furthermore, it was confirmed that the cleaning of barnacles was possible only when the pressure was 200 bar or more.

Transient Heat Transfer Analysis and Fire Test for Evaluation on Fire Resistance Performance of A60 Class Deck Penetration Piece (A60급 갑판 관통 관의 방화성능 평가를 위한 과도 열전달 해석과 화재시험)

  • Park, Woo Chang;Song, Chang Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 2021
  • A60 class deck penetration piece is a fire-resistance apparatus installed on the deck compartment to protect lives and prevent flame diffusion in fire accidents. In case that the A60 piece is newly developed or its initial design is revised, it is important to verify the fire resistance performance using a fire test procedure (FTP) code. In this paper, transient heat transfer analysis was carried out to evaluate the fire resistance design compatibility of the newly devised A60 piece. The analysis results were verified via a fire test. The heat transfer characteristics were also investigated by comparing design specifications, such as diameter, internal configuration, and material type. The analysis was performed using ABAQUS/Implicit, and the fire test was performed according to the FTP code. The fire resistance performance of the A60 pieces satisfied the safety of life at sea convention regulation. The material type was the most important design specification for the A60 piece. Based on the maximum test temperature, the measured temperature of SUS316L material was 25% lower than that of S45C on average. The differences between thermal conductivity and specific heat of each material were 17% and 58%, respectively.

An Experimental Study on IMO 2nd Generation Stability Assessment in Dead Ship Condition of 13K Chemical Tanker (13K Chemical Tanker의 기관 제어 불능상태 IMO 2세대 안정성 평가에 관한 실험적 연구)

  • Lee, Sang-Beom;Moon, Byung-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.2
    • /
    • pp.89-95
    • /
    • 2022
  • The stability of the existing ships has been evaluated through numerical calculations in the steady-state, but recently the IMO proposed a new stability assessment criteria that the stability is evaluated in the state in which environmental loads from such as waves and wind act like the loads under actual ship operating conditions. In this study, IMO 2nd generation stability assessment method and procedure were summarized for the dead ship condition, and Direct Stability Assessment (DSA) was performed on 13K chemical tanker through basin model test. The model test is performed in the ocean engineering basin to implement wave and wind loads, and environmental conditions for waves were set height and period of the incident wave, considering the regular wave and wind generation range reproducible in the ocean engineering basin. In addition, to consider the effect of wind speed, the Beaufort Scale for wind speed was applied in the model test.

A Berth Assignment Planning for a Public Terminal (공공터미널의 선석배정계획에 관하여)

  • Keum, J.S.;Lee, H.G.;Lee, C.Y.
    • Journal of Korean Port Research
    • /
    • v.10 no.2
    • /
    • pp.7-15
    • /
    • 1996
  • A berth assignment problem has a direct impact on assessment of charges made to ships and goods. A berth can be assigned to incoming vessels and operated in tow different ways: as a common user berth, as a preference berth. A common user berth is a berth that any ship calling at a port may be permitted to use according to her time of arrival and to priorities as determined by the port authority. In this paper, we concerned with various types of mathematical programming models for a berth assignment problem to achive an efficient berth operation. In this paper, we focus on a reasonable berth assignment programming in a public container terminal in consideration of trade-off between server and user. We propose a branch and bound algorithm & heuristic algorithm for solving the problem. We suggest three models of berth assignment to minimizing the objective functions such as total port time, total berthing time and maximum berthing time by using a revised Maximum Position Shift(MPS) with which the trade-off between servers and users can be considered. The berth assignment problem is formulated by min-max and 0-1 integer programming and developed heuristic algorithm to solve the problem more easily instead of branch and bound method. Finally, we gave the numerrical solutions of the illustrative examples.

  • PDF

Design and Performance Analysis of Ring Stator for Crude Oil Carriers (원유운반선용 Ring Stator 설계 및 성능 연구)

  • Kang, Jin Gu;Byun, Tae Young;Kim, Moon Chan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.369-376
    • /
    • 2021
  • The International Maritime Organization has developed the Energy Efficiency Design Index, an index related to carbon dioxide emissions, to enforce regulations on newly built ships. In this study, a new type of energy-saving device called the ring stator was used for 158k crude oil carriers, whose hull form was developed as a very thin after-body hull to reduce the resistance by delaying separation. The Energy-Saving Device (ESD) particularly involving the duct, is not adapted to the thin-after body hull form-like container ship. This new ring stator was developed considering these characteristics. A parametric study was conducted through Computational Fluid Dynamics (CFD) analysis using the Star-CCM+ program, and approximately 3.4 % improvement in propulsion efficiency was achieved. Further optimization investigations and experimental studies should be conducted in the future.

Numerical Analysis Study on the Turbulent Flow Characteristics around the Rotor Sail for Vessels (선박용 로터세일 주위의 난류 유동특성에 관한 수치해석적 연구)

  • Kim, Jung-eun;Cho, Dae-Hwan;Lee, Chang-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.648-656
    • /
    • 2022
  • As environmental regulations such as the International Maritime Organization (IMO)'s strategy to reduce greenhouse gases(GHG) are strengthened, technology development such as eco-friendly ships and alternative fuels is expanding. As part of this, ship propulsion technology using energy reduction and wind propulsion technology is emerging, especially in shipping companies and shipbuilders. By securing wind propulsion technology and introducing empirical research into shipbuilding and shipping, a high value-added market using eco-friendly technology can be created. Moreover, by reducing the fuel consumption rate of operating ships, GHG can be reduced by 6-8%. Rotor Sail (RS) technology is to generate a hydrodynamic lift in the vertical direction of the cylinder when the circular cylinder rotates at a constant speed and passes through the fluid. This is called the Magnus effect, and this study attempted to propose a plan to increase propulsion efficiency through a numerical analysis study on turbulence flow characteristics around RS, a wind power assistance propulsion system installed on a ship. Therefore, CL and CD values according to SR and AR changes were derived as parameters that affect the aerodynamic force of the RS, and the flow characteristics around the rotor sail were compared according to EP application.

Development of a Framework for Improvement of Sensor Data Quality from Weather Buoys (해양기상부표의 센서 데이터 품질 향상을 위한 프레임워크 개발)

  • Ju-Yong Lee;Jae-Young Lee;Jiwoo Lee;Sangmun Shin;Jun-hyuk Jang;Jun-Hee Han
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.186-197
    • /
    • 2023
  • In this study, we focus on the improvement of data quality transmitted from a weather buoy that guides a route of ships. The buoy has an Internet-of-Thing (IoT) including sensors to collect meteorological data and the buoy's status, and it also has a wireless communication device to send them to the central database in a ground control center and ships nearby. The time interval of data collected by the sensor is irregular, and fault data is often detected. Therefore, this study provides a framework to improve data quality using machine learning models. The normal data pattern is trained by machine learning models, and the trained models detect the fault data from the collected data set of the sensor and adjust them. For determining fault data, interquartile range (IQR) removes the value outside the outlier, and an NGBoost algorithm removes the data above the upper bound and below the lower bound. The removed data is interpolated using NGBoost or long-short term memory (LSTM) algorithm. The performance of the suggested process is evaluated by actual weather buoy data from Korea to improve the quality of 'AIR_TEMPERATURE' data by using other data from the same buoy. The performance of our proposed framework has been validated through computational experiments based on real-world data, confirming its suitability for practical applications in real-world scenarios.

Numerical Simulation for Improvement in Resistance Performance by Bulb Retrofit under Optimal Trim Conditions (최적 트림 조건하에서 벌브개조를 통한 선박저항성능 개선 연구)

  • Park, Hyunsuk;Seo, Dae-Won
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1070-1077
    • /
    • 2022
  • The International Maritime Organization has recently strengthened its marine environment regulations. The energy efficiency index has long been an important indicator of ship design, and now, energy efficiency is being enforced for existing ships as well as new ships. To increase the energy efficiency of existing ships, methods such as retrofitting the bow bulb, selecting an optimized trim during ship operation, and installing an energy saving device have been applied. In this study, the ship resistance was numerically simulated using computational fluid dynamics (CFD) under various bow and stern trim conditions. In addition, the bulb was redesigned to further improve the resistance performance under the selected trim conditions. When the improved bulb was applied, the effective horse power increased by approximately 5%. It is, however, necessary to verify whether the redesigned bulb can reduce ship resistance in waves.

Optimized Ballast Water Exchange Management for Bulk Carriers (벌크 화물선용 자동 밸러스트수 교환계획 시스템 개발)

  • HONG CHUNG-YOU;PARK JE-WOONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.4 s.59
    • /
    • pp.65-70
    • /
    • 2004
  • Many port states, such as New Zealand, U.S.A., Australia, and Canada, have strict regulations to prevent arriving ships from discharging polluted ballast water that contains harmful aquatic organisms and pathogens. They are notified that transfer of polluted ballast water can cause serious injury to public health and damage to property and environment. For this reason, ballast exchange in deep sea is perceived as the most effective method of emptying ballast water. The ballast management plan contains the effective exchange method, ballast system, and safety considerations. In this study, we pursued both nautical engineering analysis and optimization of the algorithm, in order to generate the sequence of stability and rapidity. A heuristic algorithm was chosen on the basis of optimality and applicability to a sequential exchange problem. We have built an optimized algorithm for the automatic exchange of ballast water, by redefining core elements of the A$\ast$ algorithm, such as node, operator, and evaluation function. The final version of the optimized algorithm has been applied to existing bulk carrier, and the performance of the algorithm has been successfully verified.

A Study on Microorganism Dominant Species in Bench-scale Shipboard STP Using Combined SBR and MBR Process (SBR 및 MBR 복합공정을 적용한 Bench-scale Shipboard STP에서의 미생물 우점종에 관한 연구)

  • Choi, Young-Ik;Shin, Dae-Yeol;mansoor, Sana;Kwon, Min-Ji;Jung, Jin-Hee;Jung, Byung-Gil
    • Journal of the Korean Society for Environmental Technology
    • /
    • v.19 no.6
    • /
    • pp.550-555
    • /
    • 2018
  • International Maritime Organization (IMO) is one of the most effective organizations in evolving international law for the protection and conservation of the marine environment. The IMO, MARPOL(Marine Pollution) 73/78 contains six Annexes that provide an overarching framework for the objectives of the international marine pollution. Annex IV was regulated by 64 th resolution in 2012 to control sea pollution from sewage. In 2014 large-scale wastewater treatment and nutrient removal device was developed with a grant from the Ministry of Oceans and Fisheries. A combined new process of Sequence Batch Reactor (SBR) and Membrane Bioreactor(MBR) was developed to overcome the pollution caused by shipboard sewage. In the present study, shipboard sewage wastewater was treated by mixing and aeration cycle in the newly developed SBR process. Furthermore, during analysis by NGS technique(Macrogen Co., Ltd.), dominant species of bacteria were found in the aeration tank of the Bench-scale wastewater treatment facility. Bacteroidetes and Gammaproteobacteria accounted for 27.1 % of the aerobicbacteria and 16.8 % of the anaerobicbacteria, respectively. Microorganisms play a vital role in shipboard wastewater treatment. A further detailed study is required to understand the precise role of the microorganisms in the wastewater treatment.