• Title/Summary/Keyword: 해부학적 랜드마크

Search Result 2, Processing Time 0.009 seconds

Improved Anatomical Landmark Detection Using Attention Modules and Geometric Data Augmentation in X-ray Images (어텐션 모듈과 기하학적 데이터 증강을 통한 X-ray 영상 내 해부학적 랜드마크 검출 성능 향상)

  • Lee, Hyo-Jeong;Ma, Se-Rie;Choi, Jang-Hwan
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.3
    • /
    • pp.55-65
    • /
    • 2022
  • Recently, deep learning-based automated systems for identifying and detecting landmarks have been proposed. In order to train such a deep learning-based model without overfitting, a large amount of image and labeling data is required. Conventionally, an experienced reader manually identifies and labels landmarks in a patient's image. However, such measurement is not only expensive, but also has poor reproducibility, so the need for an automated labeling method has been raised. In addition, in the X-ray image, since various human tissues on the path through which the photons pass are displayed, it is difficult to identify the landmark compared to a general natural image or a 3D image modality image. In this study, we propose a geometric data augmentation technique that enables the generation of a large amount of labeling data in X-ray images. In addition, the optimal attention mechanism for landmark detection was presented through the implementation and application of various attention techniques to improve the detection performance of 16 major landmarks in the skull. Finally, among the major cranial landmarks, markers that ensure stable detection are derived, and these markers are expected to have high clinical application potential.

Strategy of Multistage Gamma Knife Radiosurgery for Large Lesions (큰 병변에 대한 다단계 감마나이프 방사선수술의 전략)

  • Hur, Beong Ik
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.801-809
    • /
    • 2019
  • Existing Gamma Knife Radiosurgery(GKRS) for large lesions is often conducted in stages with volume or dose partitions. Often in case of volume division the target used to be divided into sub-volumes which are irradiated under the determined prescription dose in multi-sessions separated by a day or two, 3~6 months. For the entire course of treatment, treatment informations of the previous stages needs to be reflected to subsequent sessions on the newly mounted stereotactic frame through coordinate transformation between sessions. However, it is practically difficult to implement the previous dose distributions with existing Gamma Knife system except in the same stereotactic space. The treatment area is expanding because it is possible to perform the multistage treatment using the latest Gamma Knife Platform(GKP). The purpose of this study is to introduce the image-coregistration based on the stereotactic spaces and the strategy of multistage GKRS such as the determination of prescription dose at each stage using new GKP. Usually in image-coregistration either surgically-embedded fiducials or internal anatomical landmarks are used to determine the transformation relationship. Author compared the accuracy of coordinate transformation between multi-sessions using four or six anatomical landmarks as an example using internal anatomical landmarks. Transformation matrix between two stereotactic spaces was determined using PseudoInverse or Singular Value Decomposition to minimize the discrepancy between measured and calculated coordinates. To evaluate the transformation accuracy, the difference between measured and transformed coordinates, i.e., ${\Delta}r$, was calculated using 10 landmarks. Four or six points among 10 landmarks were used to determine the coordinate transformation, and the rest were used to evaluate the approaching method. Each of the values of ${\Delta}r$ in two approaching methods ranged from 0.6 mm to 2.4 mm, from 0.17 mm to 0.57 mm. In addition, a method of determining the prescription dose to give the same effect as the treatment of the total lesion once in case of lesion splitting was suggested. The strategy of multistage treatment in the same stereotactic space is to design the treatment for the whole lesion first, and the whole treatment design shots are divided into shots of each stage treatment to construct shots of each stage and determine the appropriate prescription dose at each stage. In conclusion, author confirmed the accuracy of prescribing dose determination as a multistage treatment strategy and found that using as many internal landmarks as possible than using small landmarks to determine coordinate transformation between multi-sessions yielded better results. In the future, the proposed multistage treatment strategy will be a great contributor to the frameless fractionated treatment of several Gamma Knife Centers.