• Title/Summary/Keyword: 해마 기능

Search Result 87, Processing Time 0.022 seconds

Quantitative Analysis of Metabolism for Brain Hippocampus based on Multi-modality Image Registration (다중모달리티 영상정합기반 뇌 해마영역 기능대사 정량분석)

  • Kim, Min-Jeong;Choi, Yoo-Joo;Kim, Myoung-Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.1645-1648
    • /
    • 2004
  • 해마를 비롯하여, 뇌 기능과 밀접한 관련을 가지는 뇌 하위조직의 분석에 대한 최근 연구로 MR 영상 등의 해부학적 영상으로부터의 볼륨 추출, 형상 복원, 대칭성 비교 등을 들 수 있다. 이러한 연구들은 뇌의 해부학적 정보에만 의존함으로써 관심영역에 대한 신진대사 등의 분석에 한계를 가진다. 본 논문에서는 뇌 해마영역에 대하여 해부학적, 기능적 특성의 동시 분석이 가능한 프로시저를 제안한다. 먼저 해부학적 영상과 기능적 영상의 다중모달리티 영상정합을 수행하고 이를 기반으로 해마 SPECT 볼륨이 추출되며, 나아가 체적 측정 및 강도 분포 등의 정량분석을 수행함으로써 해부학적 영역의 기능정보에 대한 직관적이며 객관적인 분석이 가능하도록 하였다.

  • PDF

Structural and Functional Changes of Hippocampus in Long Life Experienced Taxi Driver (오랜 운전경험을 가진 택시운전기사들의 해마의 구조와 기능적 변화에 대한 MRI연구)

  • You, Myung-Won;Lee, Dong-Kyun;Lee, Jong-Min;Kim, Sun-Mi;Ryu, Chang-Woo;Kim, Eui-Jong;Jahng, Geon-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.16 no.2
    • /
    • pp.124-135
    • /
    • 2012
  • Purpose : The objective of this study was to investigate the differences of hippocampal volume and shape as well as the functional change between long life experienced taxi drivers and controls of Korean population. Materials and Methods: Three-dimensional T1-weighted images and blood oxygen level dependent functional MRI(fMRI) were obtained from 8 subjects, consisting of 4 experienced (20-30 years) taxi drivers and 4 age-matched controls. The hippocampal volume and shape were analyzed with three-dimensional T1-weighted images. In addition, neuronal activities of brain were analyzed using a blood oxygen level dependent fMRI between the two groups. Results: The hippocampal volume showed no statistically significant difference between the two groups (p > 0.05). The left hippocampi of the taxi drivers were slightly elongated with larger head and tail portions than those of the controls (p < 0.05, uncorrected). For the functional MRI, fusiform gyrus was specifically activated in taxi drivers, compared with the control group. Conclusion: The structural and functional changes of taxi driver's hippocampus indicate the functional differentiation as a result of occupational dependence on spatial navigation. In other words, the continuous usage of spatial navigation performance may diminish degeneration of hippocampus and the related brain regions.

Influences of Postnatal Ginseng radix Administration on Prenatal Noise Stress-induced c-Fos Expression in the Hippocampus of Offspring Rats (태아 중 소음 스트레스가 출생 후 해마 내 c-Fos 발현에 미치는 인삼의 효과)

  • Jang, Jae-chan;Kim, Youn-Sub;Kim, Ji-Hyouck
    • Journal of Oriental Neuropsychiatry
    • /
    • v.17 no.3
    • /
    • pp.1-10
    • /
    • 2006
  • 목적:임신 중 소음 스트레스가 태아에 어떤 영향을 미치는 가를 관찰하고자, 임신 중인 흰쥐에 소음 스트레스를 가한 후 출생한 새끼 흰쥐에 인삼을 투여하여 신경적 발육에 대한, 특히 새끼 흰쥐 해마의 c-Fos 관점에서 연구하였다. 결과:CIA 영역의 c-Fos-positive 세포의수는, 출생 전 소음 스트레스를 받은 대조군에 비해, 10 mg/kg의 인삼을 투여한 군에서 유의성 있는 감소를 보였다. 해마의 CA2, CA3 영역에서의 c-Fos-positive 세포의 수는 10 mg/kg의 인삼을 투여한 그룹에서, 출생 전 소음 스트레스를 받은 대조군에 비해 유의성 있는 감소를 보였다. 해마의 dentate gyrus 영역에서 c-Fos-positive 세포의 수는, 10 mg/kg의 인삼을 투여한 그룹에서, 출생 전 소음 스트레스를 받은 대조군에 비해 유의성 있는 감소를 보였다. 결론: 인삼은 태아기 소음 스트레스로 야기되는 c-Fos의 변화로 인한 해마의 기능장애에 중화제로서 사용될 수 있다. 그리고 임신 중 소음 스트레스를 경험한 엄마의 아이들에 있어서 정신과적 문제를 치료하는데 유용할 것이다.

  • PDF

Interactive Shape Analysis of the Hippocampus in a Virtual Environment (가상 환경에서의 해마 모델에 대한 대화식 형상 분석☆)

  • Kim, Jeong-Sik;Choi, Soo-Mi
    • Journal of Internet Computing and Services
    • /
    • v.10 no.5
    • /
    • pp.165-181
    • /
    • 2009
  • This paper presents an effective representation scheme for the shape analysis of the hippocampal structure and a stereoscopic-haptic environment to enhance sense of realism. The parametric model and the 3D skeleton represent various types of hippocampal shapes and they are stored in the Octree data structure. So they can be used for the interactive shape analysis. And the 3D skeleton-based pose normalization allows us to align a position and an orientation of the 3D hippocampal models constructed from multimodal medical imaging data. We also have trained Support Vector Machine (SVM) for classifying between the normal controls and epileptic patients. Results suggest that the presented representation scheme provides various level of shape representation and the SVM can be a useful classifier in analyzing the shape differences between two groups. A stereoscopic-haptic virtual environment combining an auto-stereoscopic display with a force-feedback (or haptic) device takes an advantage of 3D applications for medicine because it improves space and depth perception.

  • PDF

Age-related neurocognitive changes and exercise-induced benefits: A review of cognitive neuroscientific research (노화 관련 뇌인지 변화와 운동의 긍정적 영향: 인지신경과학적 연구 개관)

  • Shin, Eunsam
    • Korean Journal of Cognitive Science
    • /
    • v.24 no.1
    • /
    • pp.1-24
    • /
    • 2013
  • The elderly population continues to increase in Korea and there has been a growing interest in understanding normal aging. In response to this public interest, the present paper reviewed human aging research focusing on recently published neuroimaging studies. For the first half of the paper, I reviewed the effects of aging on the brain and cognition. In normal aging, structural changes in the brain include atrophy and volume reduction in the prefrontal and temporal cortices. Functional changes are exhibited in the form of overactivation of the brain. Moreover, age-related cognitive decline is particularly observed in inhibition and memory, which are also associated with the age-related structural changes in the brain. For the second half of the paper, I introduced physical exercise studies showing that exercise played a protective role in the age-related neurocognitive decline. More specifically, engaging in physical exercise (particularly, aerobic exercise) for a relatively long period of time (e. g., > 6 mon.) protected older adults from volume loss in the prefrontal cortex and the hippocampus, and induced better inhibition and memory. These exercise-induced benefits appear to be associated with changes in neuronal levels, indicating that the aging brain is still plastic and this plasticity can be enhanced by physical exercise.

  • PDF

Effect of Motor Training on Hippocampus after Diffuse Axonal Injury in the Rats (운동훈련이 미만성 축삭손상을 일으킨 흰쥐의 해마에 미치는 영향)

  • Cheon, Song-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.1
    • /
    • pp.348-358
    • /
    • 2009
  • Diffuse axonal injury(DAI) is a common form of traumatic brain injury and thought to be a major contributor to cognitive dysfunction. Physical activity has been shown to beneficial effects on physical health and influences in hippocampus which is an important location for memory and learning. The purpose of this study was to investigate the effect of motor training on motor performance and axonal regeneration in hippocampus through the immunoreactivity of GAP-43 after diffuse axonal injury in the rats. The experimental groups were applied motor training(beam-walking, rotarod, and Morris water maze) but control groups were not. The time performing the motor tasks and GAP-43 immunohistochemistry were used for the result of axonal recovery. There were meaningful differences between experimental groups and control groups on motor performance and GAP-43 immunohistochemistry. The control groups showed increasing tendency with the lapse of time, but experimental groups showed higher. Therefore, Motor training after DAI improve motor outcomes which are associated with dynamically altered immunoreactivity of GAP-43 in axonal injury regions, particularly hippocampus, and that is related with axonal regeneration.

ELECTROPHYSIOLOGICAL CHARACTERISTICS OF GABAERGIC INHIBITION IN THE HIPPOCAMPAL CA1 OF THE RAT IN VIVO (생체내 흰쥐 해마 CA1 세포에서 가바성 억제에 대한 전기생리학 특성)

  • Choi, Byung-Ju;Cho, Jin-Hwa;Kim, Young-Jin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.27 no.1
    • /
    • pp.7-14
    • /
    • 2000
  • Inhibitory cells are critically involved in shaping normal hippocampal function and are thought to be important elements in the development of hippocampal pathologies. The present study was carried out in hippocampal CA1 area in vivo to compare with hippocampal slice studies. Intracellular and extracellular recordings with or without bicuculline electrodes were obtained in the intact brain of anesthetized rats, and cells were intracellularty labelled with neurobiotin. Electrical stimulation of fimbria-fornix resulted in an initial short-latency population spike. In the presence of $10{\mu}M$ bicuculline, orthodromic stimulation resulted in bursts of population spikes. The amplitude of population spikes in the CA1 region increased with stimulus intensity, as did the number of population spikes when the field recording electrode contained $10{\mu}M$ bicuculline. We measured the level of excitability in the CA1 area, using a paired-pulse stimulus paradigm to evoke population spikes. Population spikes showed strong paired-pulse inhibition at short interstimulus intervals. Burst afterdischarges up to 400 ms were observed after paired-pulse stimulus. These result suggest that hippocampal CA1 inhibitory interneurons can affect the excitability of pyramidal neurons that can not be appreciated in conventional in vitro preparation.

  • PDF

Effects of Memory and Learning Training on Neurotropic Factor in the Hippocampus after Brain Injury in Rats (뇌손상 흰쥐에서 기억과 학습훈련이 해마의 신경 성장인자에 미치는 영향)

  • Heo, Myoung;Bang, Yoo-Soon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.2
    • /
    • pp.309-317
    • /
    • 2009
  • This study was to investigate the effects of restoring cognition function and neurotrophic factor in the hippocampus according to memory and learning training in rats affected by brain injury. Brain injury was induced in Sprague-Dawley rats(36 rats) through middle cerebral artery occlusion(MCAo). And then experiment groups were randomly divided into three groups; Group I: Brain injury induction(n=12), Group II: the application for treadmill training after brain injury induction(n=12), Group III: the application for memory and learning training after brain injury induction(n=12). Morris water maze acquisition test and retention test were performed to test cognitive function. And the histological examination was also observed through the immunohistochemistric response of BDNF(brain-derived neurotrophic factor) in the hippocampus. For Morris water maze acquisition test, there were significant interactions among the groups with the time(p<.001). The time to find the circular platform in Group III was more shortened than in Group I, II on the 9th, 10th, 11th and 12th day. For Morris water maze retention test, there were significant differences among the groups(p<.001). The time to dwell on quadrant circular platform in Group III on the 13th day was the longest compared with other groups. And as the result of observing the immunohistochemistric response of BDNF in the hippocampus CA1, the response of immunoreactive positive in Group III on the 7th day increased more than that of Group I, II. These results suggested that the memory and learning training in rats with brain injury has a more significant impact on restoring cognitive function via the changes of neurotropic factor expression and synaptic neuroplasticity.

Effects of Treadmill Exercise on Memory and Hippocampal BDNF Expression in Streptozotocin-induced Diabetic Rats (트레드밀 운동이 당뇨흰쥐에서 기억력과 해마 BDNF 발현에 미치는 영향)

  • Lee, Hee-Hyuk;Yoon, Jin-Hwan;Kim, Seung-Hee
    • Journal of Life Science
    • /
    • v.17 no.11
    • /
    • pp.1464-1471
    • /
    • 2007
  • Diabetes mellitus is a chronic metabolic disorder, leading to many complications including cognitive deficit. Regular exercise has often been recommended as a therapeutic maneuver to the diabetic patients for the prevention of secondary complications. In the present study, the effects of treadmill exercise on memory and brain-derived neurotrophic factor (BDNF) in the hippocampus of streptozotocin (STZ)-induced diabetic rats were investigated. Male SD rats, aged 6 weeks, were randomly assigned to the following three groups: control group(n=8), STZ-induced diabetic group(n=8), and STZ-induced diabetes and exercise group(n=8). Diabetes was induced by a single injection of STZ (50 mg/kg body weight). Treadmill running was conducted with duration and frequency of 30 minutes and 5 times per week, respectively, for 8 weeks. Memories were tested in the Morris water maze. Western blotting was performed to detect BDNF expression in the hippocampus. In this study, we found that compared to the control group, the STZ-induced diabetes group had a significantly impaired cognitive performance along with suppressed BDNF expression in the hippocampus and the exercise group had a higher cognitive function in diabetic rats. Therefore, the current findings of the study show that a treadmill running exercise can improve diabetes-induced impairment of cognitive function. And the improved cognitive function appears to be related to an alleviation in diabetes-induced BDNF expression in hippocampus.

The role of hipocampus and posterior pariental cortex in acquisition of spatial learnig (공간기억의 습득에 있어서 해마와 두정엽후위의 역할)

  • Shim, Beom;Leem, Joong-Woo;Nam, Taick-Sang;Paik, Kwang-Se;Lee, Bae-Hwan;Park, Yong-Gou
    • Korean Journal of Cognitive Science
    • /
    • v.10 no.4
    • /
    • pp.41-50
    • /
    • 1999
  • It is widely known that the hippocampus plays an important role in spatial memory. Recent studies have suggested that the posterior parietal cortex (PPC) is involved in spatial memory. However it is unclear whether the PPC is involved in w working memory or reference memory of spatial learning. The purpose of the present study was to determine contribution of the hippocampus and the PPC to spatial working memory and acquisition of reference memory. Using an eight-arm radial maze in which e each arm was baited. working memory was tested by measuring rat's ability to remember arms they had visited. Reference memory was tested by measuring rat's ability to avoid visiting four consistently unbaited arms. Effects of hippocampal or PPC lesion on working memory or acquisition of reference memory in radial-arm maze learning were investigated Working memory was impaired by hippocampal lesion whereas not affected by PPC lesion. Acquisition of reference memory was impaired by lesion in either site. The results suggest that the hippocampus plays an important role in the spatial working memory while both the hippocampus and the PPC contribute to the acquisition of spatial reference memory.

  • PDF