• Title/Summary/Keyword: 항해안전 평가 모델

Search Result 81, Processing Time 0.02 seconds

A Study on the Improvement of Myeongnyang Waterways' Traffic Separation Scheme (명량수도의 통항분리방식 개선에 관한 연구)

  • Dimailig, Orlando S.;Jeong, Jae-Yong;Kim, Chul-Seung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.4
    • /
    • pp.407-414
    • /
    • 2010
  • The fairway within the area of Yul-do and Songdo located near the Myeongnyang-sudo approaches south of Mokpo harbor is well guided by traffic separation scheme and other navigational aids. However, that part of the waterways where Yul-do is located sits at the cross-roads of marine traffic and is subjected to some potential risks in the voyage navigation: the effect of climatic phenomenon, the disregard of most ships in using the western sector of the fairway creating a congestion in the eastern sector, and lastly, the disadvantageous erect of the location and height of Yul-do island that hinders good lookout. This study investigates the environmental conditions that prevailed in the area in the span of 5-year period and the marine traffic situation taken from the data within the 72-hour period The navigational hazards and marine casualties are also be presented. The results are analyzed and are made the basis of a proposal for an improved separation of traffic. Thereafter, an evaluation is carried out by using the components of marine traffic flow simulation and ES modeling index. It is evaluated through simulation by the use of full-mission ship handling simulator.

Numerical Study on Towing Stability of LNG Bunkering Barge in Calm Water (LNG 벙커링 바지의 정수 중 예인안정성에 관한 수치연구)

  • Oh, Seung-Hoon;Jung, Dong-Ho;Jung, Jae-Hwan;Hwang, Sung-Chul;Cho, Seok-Kyu;Sung, Hong-Gun
    • Journal of Navigation and Port Research
    • /
    • v.43 no.3
    • /
    • pp.143-152
    • /
    • 2019
  • In this paper, the towing stability of the LNG bunker barge was estimated. Currently, LNG bunkering barge is being developed for the bunkering of LNG (Liquefied Natural Gas), an eco-friendly energy source. Since the LNG bunkering barge assumes the form of a towed ship connected to the tow line, the towing stability of the LNG bunker barge is crucial f not only for the safety of the LNG bunker barge but also the neighboring sailing vessels. In the initial stages, a numerical code for towing simulation was developed to estimate the towing stability of the LNG bunkering barge. The MMG (Maneuvering Mathematical modeling Group) model was applied to the equations of motion while the empirical formula was applied to the maneuvering coefficients for use in the initial design stage. To validate the developed numerical code, it was compared with published calculation and model test results. Towing simulations were done based on the changing skeg area and the towing position of the LNG bunkering barge using the developed numerical codes. As a result, the suitability of the designed stern skeg area was confirmed.

Numerical Study on Towing Stability of LNG Bunkering Barge in Calm Water (LNG 벙커링 바지의 정수 중 예인안정성에 관한 수치연구)

  • Oh, Seunghoon;Jung, Dongho;Jung, Jae-Hwan;Hwang, Sung-Chul;Cho, Seok-kyu;Sung, Hong Gun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.185-188
    • /
    • 2019
  • In this paper, the towing stability of the LNG bunker barge is estimated. Currently, LNG bunkering barge is being developed as an infrastructure for the bunkering of LNG (Liquefied Natural Gas), an eco-friendly energy source. Since the LNG bunker barge are in the form of towed ship connected to the tow line, the towing stability of the LNG bunker barge is very important for the safety of not only the LNG bunker barge but also the surrounding sailing vessels. The numerical code for towing simulation was developed to estimate the towing stability of the LNG bunker barge at the initial design stage. The MMG(Manoeuvring Mathematical Group) model was applied to the equations of motion and the empirical formula was applied to the maneuvering coefficients so that they could be used in the initial design stage. To validity of the developed numerical code, it was compared with published calculation and model test results. Towing simulations were carried out according to with and without stern skeg of the LNG bunker barge using the developed numerical code. Through the results of the simulations, the appropriateness of the stern skeg area designed was confirmed.

  • PDF

The Effect of the Variation of a Wind Speed on the Stability of a Container Crane (풍속변화가 컨테이너 크레인의 안전성에 미치는 영향)

  • Lee, Seong-Wook;Shim, Jae-Joon;Han, Dong-Seop;Han, Geun-Jo;Kim, Tae-Hyung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.433-438
    • /
    • 2005
  • This study was carried out to analyze the effect of the variation of a wind speed on the stability of a container crane. The wind load according to 'The Requirement of Port Facilities and Equipments / Specification for the design of crane structures (KS A 1627)' and 'Load Criteria of Structures' enacted by the ministry of construction & transportation was evaluated. And the uplift forces of a container crane under this wind load were calculated by analyzing reaction forces at each supporting point and compared with each other. The analytic model was a container crane with uplift capacity of 50ton which was widely used in port.

  • PDF

A Study for Real-time Data Collection and Application of DTW for Evaluation Ship Stability (선박 복원 성능 평가를 위한 실시간 데이터 수집 및 DTW 적용에 대한 연구)

  • Jeong-Hun Woo;Ho-June Seok;Seung Sim;Jun-Rae Cho;Deuk-Jae Cho;Jong-Hwa Baek;Jaeyong Jung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.206-207
    • /
    • 2023
  • Intelligent maritime traffic information services provide services for maritime traffic safety, but due to the difference in ship specifications and loading condition, the method of determining abnormalities in ship stability has not been generalized. In this study, we established a method for collecting and preprocessing Accelerometer and GPS data for calculating ship stability. In addition, we have researched a model that can determine the real-time ship stability through data science algorithms that can reflect each vessel specifications and external forces, breaking away from approximate calculations that cannot reflect weather factors in the real ocean.

  • PDF

A Study on the Ship Channel Design Method using Variable Bumper Area Model (I) (가변범퍼영역모델을 이용한 항로설계기법(I))

  • Jeong Dae-Deug;Lee Joong-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.169-174
    • /
    • 2004
  • To design ship channel is one of important factors for planning and developing a port. In most case, the core factors for designing ship channel are the layout and width of dvnnel provided the net underkeel clearance is assessed as safety. In this study, Variable Bumper Area(VBA) model is applied to design and assess ship channel. This model reflects ship's principle dimension, ship domain theory, ship speed, conning officer's ship handling skill and experience and all external forces which cause leeway, set and drift and the change of ship maneuvering characteristics. Full Mission Ship Handling Simulator is used to analyze ship dynamic data according to conning officer's ship control, external forces, etc. This model uses Domain-index for assessing the efficiency and safety of the channel. The proposed model is applied to Ulsan new port plan which has a channel width of 1.5 times the length if the largest vessel, a radius if 5 times the length of the largest vessel in a curve of 57 degree centerline angle and SBM facility adjacent to the lateral edge if channel. The result of this study shows tint the width and radius of channel curve are suitable for the target ship but the difficulty of ship handling is caused by the large course change and SBM located in the vicinity if channel.

  • PDF

A Basic Study on Prediction Module Development of Collision Risk based on Ship's Operator's Consciousness (선박운항자 의식 기반 충돌 위험도 예측 모듈 개발에 관한 연구)

  • Park, Young-Soo;Park, Sang-Won;Cho, Ik-Soon
    • Journal of Navigation and Port Research
    • /
    • v.39 no.3
    • /
    • pp.199-207
    • /
    • 2015
  • In ports of Korea, the marine traffic flow is congested due to a large number of vessels coming in and going out. In order to improve the safety and efficiency of these vessels, South Korea is operating with a Vessel Traffic Service System, which is monitoring its waters for 24 hours. However despite these efforts of the VTS (Vessel Traffic Service) officers, collisions are occurring continuously, the risk situation is analyzed that occurs once in about 20 minutes, the risk may be greater. It investigated to reduce these accidents by providing a safety standard for collision danger in a timely manner. Thus, this study has developed a risk prediction module to predict risk in advance. This module can avoid collision risk to adjust the speed and course of ship using a risk evaluation model based on ship operator's risk perspective. Using this module, the ship operators and VTS officers can easily be identified risks in complex traffic situations, so they can take an appropriate action against danger in near future including course and speed change. To verify the effectiveness of this module, this paper predicted the risk of each encounter situation and confirmed to be capable of identifying a risk changes in specific course and speed changes at Busan coastal water.

A Study on the Hull-dimension of 89 ton class Stow-net Vessel with Stern-fishing (89톤급 선미식 안강망어선의 선형치수에 관한 연구)

  • Park, Je-Ung;Lee, Hyeon-Sang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.3
    • /
    • pp.159-165
    • /
    • 1997
  • This paper presents the optimum dimension of 89 ton class stow-net vessel with stern-fishing. The model of basic design is developed by using the optimization techniques referring to objective function and numerous constraints as follows; speed, fishing quantity, fishing days, catch per unit effort(CPUE), and weight/ratio of main dimensions, etc. Thus, the basic design of stow-net fishing vessel is built up by using the optimization of the design variables called the economic optimization criteria, and the objective function represents the criterion which is cost benefit ratio(CBR). The main conclusions are as follows. 1. S/W for decision of optimum hull size is developed in 89 ton class stow-net fishing vessel which is constructed with optimization of the design variables called the economic optimization criteria. 2. For optimum ship dimensions in 89 ton class stow-net fishing vessel, the hull dimensions can be obtained in the range of L= 27.3m, B = 6.6m, D = 2.80m, Cb = 0.695, T/D = 0.80, $\Delta$(displacement)=281.7ton with 10 knots.

  • PDF

A Study on the Traffic Patterns of Dangerous Goods Carriers in Busan North and Gamcheon Port (부산 북항·감천항의 위험화물운반선 통항패턴에 관한 연구)

  • Kim, Jong-Kwan;Kim, Se-Won;Lee, Yun-Sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.1
    • /
    • pp.9-16
    • /
    • 2017
  • As a preliminary study of enter or leaving traffic patterns of the Korea main port, port Management Information System (Port-MIS) data was used to check the volume of vessels entering and leaving the port of Busan, and three consecutive days from each seasons were selected for study. Selected 12-day General Information Center on Maritime Safety & Security (GICOMS) data was also used to analyze the traffic pattern in the main traffic lane of Busan port for dangerous goods carrier. Also, the distance between dangerous goods carriers and Oryukdo breakwater of east breakwater in the main traffic lane was analyzed. Collision probability was estimated using the cumulative probability distribution function of the normal distribution for the maritime traffic safety audit scheme based on the assumption that a ship's trajectory has a normal distribution for a section of the route. However, in case of entry or leaving thorough the Oryukdo breakwater and entry thorough the east breakwater, ship's sailing trajectories were revealed not to follow a normal distribution via regularity testing using a KS-test and SW-test. Especially in the north port, the tendency of the right side of the ship to pass was remarkable. It is desirable to develop a traffic model suitable for the characteristics of the port rather than to apply general traffic theories, and to apply this model to a maritime traffic safety diagnosis, so further research is needed.

A Study on the Coastal Navigation Safety by Navigational Risk Assessment Model (항해위험평가모델에 의한 연안역 항해의 안전 제고에 관한 연구)

  • KIM, Won-Ouk;KANG, Song-Jin;YOUN, Dae-Gwun;BAE, Jun-Young;KIM, Chang-Je
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.1
    • /
    • pp.201-208
    • /
    • 2017
  • The major cause of the marine accidents is the collision with a moving object such as ship as well as the fixed object such as breakwater. Therefore, the most effective way to reduce the maritime ship accidents is the prevention of collision. In order to decrease the collision, it is principle that the navigation officer promptly judges the dangerous condition and makes the quick response. The ship does not allow any object or other ships approaching its surrounded area called ship area so that it prevents the collision. Generally, the ship which has high speed or poor maneuvering capability shall be managed from the distance so that the other ship does not invade its ship domains(watching distance, blocking distance). Accordingly, this study sets the navigational risk assessment model by applying ship dynamic domain and collision judgement method considered ship length, speed and navigational capability. It also reviewed the validity of the model and evaluated the perilous water way (Maenggol Channel) and a curved route near Maenggol Channel. As a result, in case of a ship with 100m in length passing Maenggol Channel, it represented "warning" level before 1.5nm to the entry, "dangerous"level 0.75nm before to it and "very dangerous" level 0.5nm before to it and then "dangerous"level again up to the entry. Applying to the curved route also showed the same results as the Narrow Channel or Maenggol Channel. This analysis highly matched with the actual navigation results. In the future, this model will be useful for coastal navigation safety chart development and safety evaluation for route or port development. It also allows to evaluate the dangerous route or the best route by applying the result into ECDIS so that it will finally help to reduce the marine accidents. Eventually the model will be effective for the marine traffic simulation evaluation forced by Maritime Traffic Safety Act.