Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2022.11a
/
pp.147-148
/
2022
Recently, as a number of accidents occur while berthing ships, the need for safety measures for ship operation in ports is emphasized. In order to quantitatively analyze the contents of safety measures in Busan New Port, this study collected ship trajectory data,, and based on this data, applied a maritime artificial intelligence algorithm to analyze the trajectory pattern. As a result, the waypoint of the ship arriving and departing Busan New Port was derived and the operation pattern of the ship's speed and course was proposed.
Kim, Joo-Sung;Jeong, Jung Sik;Lee, Seong-Yong;Lee, Eun-seok
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2016.05a
/
pp.285-286
/
2016
We aim to propose the prediction modeling method of ship's position with extracting ship's trajectory model through pattern recognition based on the data that are being collected in VTS centers at real time. Support Vector Machine algorithm was used for data modeling. The optimal parameters are calculated with k-fold cross validation and grid search. We expect that the proposed modeling method could support VTS operators' decision making in case of complex encountering traffic situations.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2022.11a
/
pp.227-228
/
2022
위치기반 등부표 관리 기술 개발 연구는 AIS 또는 RTU가 설치된 등부표에 대한 이탈 위험 인지, 항해안전 사고 예방 등 안전대책 강화를 위해 연구하는 것이다. 등부표는 조류, 바람 등 외력에 의해 이출거리가 발생하여 선회반경이 형성되고 이러한 외력으로 인하여 유실, 위치이동 등이 발생할 수 있고 선박추돌 등 항해안전 사고도 발생할 수 있다. 이러한 등부표 사고는 물적 피해비용과 더불어 기능 정지 등으로 인하여 이용자의 안전운항에 대한 심리적 부담감 또는 위험감수 등의 추가적인 행정소요 비용이 발생할 수 있다. 또한 선박추돌 의심 사고 발생시 가해 선박 확인은 현 관리운영시스템상 등부표 및 선박항적을 확인할 수 있는 기능이 없어 대부분의 관리자들은 해경 및 VTS센터에 의뢰하여 식별 해야한다. 이와같이 등부표 사고가 발생하면 항해안전 위험, 행정소요 비용 발생 등 관리자 및 이용자들에게 많은 불편을 초래한다. 따라서 등부표가 고시된 위치에 정위치 여부를 모니터링할 수 있는 안전반경 정보와 선박추돌사고 예방 및 사고발생시 등부표 항적과 선박항적을 확인할 수 있는 기능 등 등부표 위치를 기반으로하는 체계적인 관리가 필요하여 관리 기술 개발 연구를 하였다.
Kim, Joo-Sung;Jeong, Jung Sik;Jeong, Jae-Yong;Kim, Yun Ha;Choi, Ikhwan;Kim, Jinhan
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2015.07a
/
pp.310-311
/
2015
Ships' tracking data are being monitored and collected by vessel traffic service center in real time. In this paper, we intend to contribute to vessel traffic service operators' decision making through extracting ships' tracking patterns and models based on these data. Support Vector Machine algorithm was used for vessel track modeling to handle and process the data sets and k-fold cross validation was used to select the proper parameters. Proposed data processing methods could support vessel traffic service operators' decision making on case of anomaly detection, calculation ships' dead reckoning positions and etc.
Recently, the Vessel Traffic Service (VTS) coverage has expanded to include coastal areas following the increased attention on vessel traffic safety. However, it has increased the workload on the VTS operators. In some cases, when the traffic volume increases sharply during the rush hour, the VTS operator may not be aware of the risks. Therefore, in this paper, we proposed a new method to recognize ship movement anomalies automatically to support the VTS operator's decision-making. The proposed method generated traffic pattern model without any category information using the unsupervised learning algorithm.. The anomaly score can be calculated by classification and comparison of the trained model. Finally, we reviewed the experimental results using a ship-handling simulator and the actual trajectory data to verify the feasibility of the proposed method.
The analysis of maritime traffic refers to the processes that are used to analyze the environmental characteristics of the target area and, based on this analysis, predict the traffic pattern of the vessels. In recent years, maritime traffic analysis has become significant with increase maritime traffic volume and expansion of VTS coverage area. In addition, maritime traffic analysis is also applicable in the safety assessment of port facilities and the VTS (Vessel Traffic Service). In this paper, we propose a method to analyze the vessels' traffic pattern by using the heat map and the centroid method. This method is efficient for the analysis of the vessel trajectory data where spatial characteristics change with time. In the experiments, the traffic density and centroid by time have were analyzed. Trajectory data collected at Mokpo harbor was adopted. Finally, we reviewed the experimental results to verify the feasibility of the proposed method as a maritime traffic analysis method.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2022.06a
/
pp.133-134
/
2022
본 논문에서는 자율운항선박의 육상 관제 및 원격제어를 위해, 자율운항선박의 비상상황인식 기술 개발에 대한 기초연구를 수행한다. 자율운항선박 주변의 타선들의 이동 경로를 예측하고 이에 따라 자선의 이동경로와 비교하여, 충돌위험 영역을 식별함으로써 비상상황 인식이 가능하도록 한다. 먼저, 타선의 이동경로 예측을 위해서는 선박자동식별시스템 AIS 정보를 바탕으로, 해당 해역에서의 통항패턴을 분석하고 이를 기반으로 타선의 특정 시간 동안의 이동 경로를 예측한다. 예측된 타선의 이동경로와 함께 자선의 이동경로를 비교 분석함으로, 최근 접점 및 최근접점 거리 정보 기반의 충돌위험영역을 식별한다. 식별된 충돌위험영역의 위험도에 따라 육상 관제센터에서는 원격 제어를 통한 위험상황 회피가 가능하도록 활용할 수 있다. 제안된 방법은 AIS에서 얻어지는 실제 항적 데이터를 이용하여 초기 결과를 검증하였다.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2014.06a
/
pp.319-322
/
2014
VTS(Vessel Traffic Center)는 관할해역의 해상교통데이터를 수집하여 해상교통관제를 수행하고 있다. 이러한 해상교통데이터는 가공되지 않는 정보이므로, 관제사 및 선박 등 사용자가 유용하게 활용할 수 있는 형태로의 분석이 필요하다. 이는 객관적인 데이터로 관제사 및 선박에서 해상교통 안전정책을 수립하는데 중요하다. 이를 위해 본 연구에서는 수년간 VTS에 축적되고 있는 BIG DATA를 활용하여 해상교통패턴을 분석하고자 한다. 분석하는 해상교통패턴은 통항분포, 선종별 항적 비교, 예부선의 강 조류 주의구역 판별, 항로상 어선 조업 현황분석 등을 통해 빅데이터를 활용한 관제구역설정, 집중관제구역 검토가 가능하다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.20
no.6
/
pp.1195-1202
/
2016
Recently, a lot of studies that applying the big data technology to various fields, are progressing actively. In the maritime domain, the big data is the meaningful information which makes and gathers by the navigation and communication equipment from the many ships on the ocean. Also, importance of the maritime safety is emphasized, because maritime accidents are rising with increasing of maritime traffic. To support prevention of maritime accidents, in this paper, we developed a vessel traffic display and statistic system based on AIS messages from the many vessels of maritime. Also, to verify the developed system, we conducted tests for vessel track display function and vessel traffic statistic function based on two test scenarios. Therefore, we verified the effectiveness of the developed system for vessel tracks display, abnormal navigation patterns, checking failure of AIS equipments and maritime traffic statistic analyses.
Kim, Joo-Sung;Jeong, Jung Sik;Park, Gyei-Kark;Kim, Yun Ha;Kim, Gye Soo
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2014.06a
/
pp.287-289
/
2014
선박의 선위 추측(DR, Dead Reckoning)은 수신되거나 측정된 위치 데이터와 속력, 침로 데이터만을 반영하여 계산하므로 대양의 항해나 연근해의 해역에서는 유효할 수 있으나 침로의 변경과 선속의 변화가 잦은 항계 내의 조선에 있어서는 적용이 어렵다는 문제점이 있다. 본 논문에서 제안하는 선박의 추측위치(DRP, Dead Reckoning Position)는 선박의 운항 패턴에 따라 항계 내의 항적 데이터를 수집하고, 수신된 위치 데이터와 속력, 침로 데이터를 점장위도항법(Mercator Sailing)을 통하여 계획항로(Planned Route)의 각 변침점(WP, Waypoint)간 침로(Course)와 항정(Ship's Passage)에 반영하였다. 제안된 추측위치 산출방법을 통하여 항계 내의 조선과정에서 계획항로를 선박의 추측위치와 결합하여 특정 시간 후의 상황패턴을 미리 예측하고 관제사의 의사결정에 기여하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.