• Title/Summary/Keyword: 항복 전단응력

Search Result 160, Processing Time 0.029 seconds

The Rheological Characteristics of Wyoming Bentonite: Role of Salinity (와이오밍 벤토나이트의 유변학적 특성: 염분농도의 역할)

  • Jeong, Sueng-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.81-92
    • /
    • 2011
  • The rheological properties of Wyoming bentonites are strongly influenced by the size of particles, cation exchangeable capacity, arrangement and morphology of clay mineral. This paper presents the results of rheological investigations on the Wyoming bentonites aqueous dispersions: two types of particle flocculation were considered. For the Wyoming bentonite, 0g/L and 30g/L NaCl equivalent salinity were added in fresh and salt water to examine the rheological behavior. This paper examined the general rheological characteristics, compatibility of rheological models and correlation between soil structure and change in rheological properties of Wyoming bentonite caused by increasing salinity. From flow curves of bentonites hydrated with fresh water and salt water, the observed general flow behavior is very close to shear thinning with yield stress (or ideal Bingham fluid with yield stress and plastic viscosity). However, the change of shear stress at the same shear rate is clear, particularly for lower shear rate. Well-known rheological models are used to fit the data. There is a good agreement between rheological model and data: Carreau, Herschel-Bulkley and power-law for S=0g/L and bilinear, Herschel-Bulkley and power-law for S=30g/L. It may be due to the fact that the internal structural bonding (strong modification of particle-particle interactions from edge-to-edge and/or edge-to-face to face-to-face) in soil matrix is affected from the evolution of rheological properties with different salinities.

Simplified Analysis and Design with Finite Element for Reinforced Concrete Shear Walls Using Limit State Equations (한계상태방정식에 의한 R/C 전단벽의 유한요소 간편 해석과 설계)

  • 박문호;조창근;이승기
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.43-52
    • /
    • 2003
  • The present study is to investigate the ultimate behavior and limit state design of 2-I) R/C structures, with the changing of crack direction, and the yielding of the reinforcing steel bars, and Is to introduce an algorithm for the limit state design and analysis of 2-D R/C structures, directly from the finite element model. For the design of reinforcement in concrete the limit state design equation is incorporated into finite element algorithm to be based on the pointwise elemental ultimate behavior. It is also introduced a simplified nonlinear analysis algorithm for stress-strain relationship of R/C plane stress problem considering the cracking and its rotation in concrete and the yielding of the reinforcing steel bar. The algorithm is incorporated into the nonlinear finite element analysis. The analysis model is compared with the experimental model of R/C shear wall. In a simple design example for a shear wall, the required reinforcement ratios in each finite element is obtained from the limit state design equations.

A Constitutive Model on the Behavior Under $K_0$ Condition for Cohesionless Soils and Optimization Method of Parameter Evaluation Based on Genetic Algorithm (사질토의 $K_0$ 조건하 거동에 대한 구성모델 및 유전자 알고리즘을 적용한 계수의 최적화 산정기법)

  • 오세붕;박현일
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.37-48
    • /
    • 2004
  • This study is focused on the constitutive model in order to represent brittleness and dilatancy for cohesionless soils. The constitutive model was based on an anisotropic hardening rule derived from generalized isotropic hardening nile, which includes an appropriate hardening equation for the overall strain behavior at small to large strains. The yield surface is a simple cylinder type in stress space and it makes the model practically useful. Hence dilatancy behavior in cohesionless soils could be modeled reasonably. A peak stress ratio was defined in order to model brittle stress-strain relationships. An optimized design methodology was proposed on the basis of real-coded genetic algorithm in order to determine parameters for the proposed model systematically. The material parameters were then determined by that algorithm. In order to verify the proposed model, triaxial tests were performed under $K_0$ conditions far weathered soils. In comparison with the triaxial test results under $K_0$ conditions, the proposed model could calculate appropriately the actual effective stress behavior on brittle stress-strain relationships and dilatancy.

Direct Punching Shear Strength Model for Interior Slab-Column Connections and Column Footings with Shear Reinforcement (전단 보강 슬래브-기둥 내부 접합부 및 기초판에 대한 뚫림 전단강도 모델)

  • Choi, Kyoung-Kyu;Kim, Sug-Hwan;Kim, Dong-Hoon;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.159-168
    • /
    • 2011
  • In the present study, an improved design method was developed for the punching shear strength of interior slabcolumn connections and column footings with and without shear reinforcement. In the evaluation of the punching shear strength, the possible failure mechanisms of the connections and column footings were considered. The considered failures modes were inclined tensile cracking of concrete, yielding of shear re-bars, and concrete crushing of compression zone/strut. The punching shear applied to the concrete critical section was assumed to be resisted mainly by the compression zone. The punching shear strength of the concrete compression zone was evaluated based on the material failure criteria of the concrete subjected to the compressive normal stress and shear stress. For verification of the proposed design method, its prediction was compared with the existing test results. The result showed that the proposed method predicted the strengths of the test specimens better than the current design methods of the KCI code for both the shear reinforced and unreinforced cases.

Evaluating rheological properties of excavated soil for EPB shield TBM with foam and polymer (폼과 폴리머를 활용한 EPB 쉴드 TBM 굴착토의 유동학적 특성 평가)

  • Byeonghyun Hwang;Minkyu Kang;Kibeom Kwon;Jeonghun Yang;Hangseok Choi
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.5
    • /
    • pp.387-401
    • /
    • 2023
  • The Earth Pressure Balanced (EPB) Shield Tunnel Boring Machine (TBM) is widely employed for constructing urban underground spaces due to its minimal vibration and low noise levels. The injection of additives offers several advantages, including maintaining shield chamber pressure, reducing shear strength, minimizing cutter wear, and decreasing the permeability of the excavated soil. This technique is known as soil conditioning and involves the application of additives such as foam, polymer, and bentonite slurry. In this study, weathered granite soil commonly encountered at domestic tunnel sites was used as a soil specimen. Foam and polymer were applied as additives to assess the rheological properties of conditioned soils. The workability was evaluated through slump tests, while the rheological properties were assessed through laboratory pressurized vane shear tests conducted under the same conditions. Specially, the polymer was applied under specific conditions with low workability with high slump values, with the aim of evaluating the impact of polymer application. The test results revealed that with an increase in the Foam Injection Ratio (FIR), the slump value also increased, while the torque, peak strength, yield stress, apparent viscosity, and thixotropic area decreased. Conversely, an increase in the Polymer Injection Ratio (PIR) led to results opposite to those of FIR. Additionally, a correlation between the slump value and yield stress was proposed. When comparing conditions with only foam applied to those with both foam and polymer applied, even with similar slump values, the yield stress was found to be lower in the latter conditions.

Durability Estimation for ER Fluids of Methyl Cellulose Component in Smart Hydraulic Systems (지능형 유압시스템을 위한 메틸 셀루로이즈 성분 ER 유체의 내구성 평가)

  • 김옥삼;박우철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1211-1219
    • /
    • 2001
  • The electro-rheological(ER) fluids for smart hydraulic system are a class of colloidal dispersion which exhibit large reversible Changes in their rheological behavior when they are subjected to external electrical fields. This paper presents experimental results on material properties of an ER fluids subjected to electrical fatigues. As a first step, ER fluid is made of methyl cellulose(MC) choosing 25% of particle weight-concentration. Following the construction of test mechanism for durability estimation, the dynamic yield shear stress and the current density for the ER fluids of MC component are experimentally distilled as a function of electric field. In addition, the surface roughness of the employed electrode are evaluated as a function of the number of the electric-field cycles.

  • PDF

전장 부하에대한 전기유동유체의 역학적 특성 고찰

  • 박우철;김기선;정재천;최승복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.310-314
    • /
    • 1993
  • 본 연구에서는 전기유동체의 전기장 부하 변화에따른 역학적특성을 고찰하였다. 유체에 가해지는 전기장은 0 .approx. 2.5 kV/mm 까지 변화시켰고, 외부에서 가해지는 회전력은 0 .approx. 500 rpm 까지의 범위로 하였으며, 용매의 종류를 달리하고 각각의 용매에 대한 중량비를 달리하여 자체 조성한 5종류의 전기유동유체에 대하여특성 고찰하였다. 각각의 전기유동유체는 부하되는 전기장에 대하여 전단력과 전단비의 관계가 선형적으로 증가하였고, 전기유동유체의 항복응력도 부하되는 전기장의함수로 증가함을 알 수 있었다. 또한 부하되는 전기장의 크기뿐만 아니라 입자의 중량비, 용매의 종류도 전기 유동유체의 역학적 특성에많은 영향을 미침을 알 수 있었다.

Investigation of Mechanical Characteristics of ER Fluids for Application in Hydraulic Valve (유압밸브 적용을 위한 ER 유체의 역학적 특성 고찰)

  • 김옥삼;이현창;박우철
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.84-90
    • /
    • 2001
  • The electro-reheoligical(ER) effect refers to the abrupt change in viscosity in certain suspensions on application of an electric field. This paper presents experimental results on material properties of an ER fluids subjected to electrical fatigues. As a first step, two types of EF fluids are made of arabic gum and methyl cellulose(MC) choosing 25% of parti-cle weight-concentration. Following the construction of test mechanism for electrical durability of ER fluid, the dynamic yield shear stress and current density of the ER fluids are experimentally distilled as a function of electric field. The yield shear stress of operated ER fluids are distilled and compared with those of unused ER fluids.

  • PDF

Thin-Walled Beam Model for Structural Analysis of SWATH (SWATH의 구조해석을 위한 Thin-Walled Beam 모델)

  • Sang-Gab Lee;Yoon-Sup Ko
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.4
    • /
    • pp.136-152
    • /
    • 1993
  • This study is intended to develop an accurate and efficient, analytical thin-walled beam model, and to analyze overall behavior of SWATH ship under repeated overloads. SWATH ship is idealized to a simple thin-walled beam of channel type. An analytical beam model is formulated by the stress component with geometrically(fully) nonlinear thin-walled beam and treated numerically by the Finite Element Method. An efficient cyclic plasticity model is also included, suitable for material nonlinear behavior under complex loading conditions. The local stress distribution can be very exactly represented and the material yielding propagation, easily traced. In addition, the local treatment of the effect of shear deformation improves the representation of deformation and shear stress distribution along the section contour. It is desirable to use the analytical thin-walled beam at initial design stage, and is needed to improve the practical thin-walled beam model advancing the current approach.

  • PDF

Calculation of Horizontal Shear Strength in Reinforced Concrete Composite Beams (철근콘크리트 합성보의 수평전단강도 산정)

  • Kim, Min-Joong;Lee, Gi-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.772-781
    • /
    • 2020
  • A direct shear member resists external forces through the shear transfer of reinforcing bars placed at the concrete interface. The current concrete structural design code uses empirical formulas based on the shear friction analogy, which is applied to the horizontal shear of concrete composite beams. However, in the case of a member with a large amount of reinforcing bars, the shear strength obtained through the empirical formula is lower than the measured value. In this paper, the limit state of newly constructed composite beams on an existing concrete girder is defined using stress field theory, and material constitutive laws are applied to gain horizontal shear strength while considering the tension-stiffening and softening effects of concrete struts. A simplified method of calculating the shear strength is proposed, which was validated by comparing it with the related design code provisions. As a result, it was confirmed that the method generally shows a similar tendency to the experimental results when the shear reinforcing bar yields, unlike the regulations of the design code, where differences in the predicted value of shear strength occur according to the shear reinforcement ratio.