• Title/Summary/Keyword: 항복선 해석

Search Result 41, Processing Time 0.026 seconds

Numerical Modelling on the Strength of Reinforced Concrete Simple-Continuous Deep Beams with Openings by an Upper-Bound Theorem (상계치 이론을 이용한 개구부를 갖는 철근콘크리트 단순·연속 깊은 보 내력의 수치해석 모델)

  • Yang, Keun-Hyeok;Eun, Hee-Chang;Chung, Heon-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.469-477
    • /
    • 2006
  • Models to predict the ultimate strength of simply supported or continuous deep beams with web openings are proposed. The derived equations are based on upper-bound theorem. The concrete is assumed as a perfectly plastic material obeying the modified Coulomb failure criteria with zero tension cutoff. Reinforcing bar is considered as elastic-perfectly plastic material and its stress is calculated from the limiting principal compressive strain of concrete. The governing failure mechanisms based on test results are idealized as rigid moving blocks separated by a hyperbolic yield line. The effective compressive strength of concrete is calculated from the formula proposed by Vecchio and Collins. Comparisons with existing test results are performed, and they show good agreement.

Suggestion on Strength Formula of Square Hollow Section Tubluar Column-to-BeamPinned Connections (각형강관 기둥-보 핀접합부의 내력식 제안)

  • Choi, Sung Mo;Lee, Seong Hui;Lee, Kwang Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.525-534
    • /
    • 2006
  • Column-to-beam pinned connections can cause local moment to the web of a steel tube due to the distance of eccentricity between the row of bolts and the column flange, which possibility deteriorates the load capacity of column. In this study, a square hollow section tubular used finite element analysis of a square hollow section tubular column was carried out, and the column width and thickness, existence and non-existence of internal reinforcement, and existence and non-existence of compressive force were taken as variables to examine the load capacity deterioration of a square column caused by moment. To guarantee the reliability of the finite element results, some specimens were fabricated and tested. The yield line method was applied to suggest the strength formulas of the square tubular column to the beam pinned connections. Based on the study results, the column strength the moment of the square hollow section tubular column to the beam pined connections improved with the increase in the w to strength limitations, a no-reinforcement type of square hollow section tubular column was proposed, and if the limitation values were not satisfied, the reinforcement of the internal column was made mandatory. Therefore, the horizontal -reinforcement type considered the strength increase, and the fabrication of the square hollow section tubular column was ar column that considered its load capacity with the moment for the no-reinforcement and the horizontal-reinforcement types.

Verification of the Seismic Performance Evaluation Methods for Enclosure Dam (기존 방조제의 내진성능평가 방법 검증)

  • Kim, Kwangjoon;Kim, Hyunguk;Kim, Sung-Ryul;Lee, Jinsun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.5
    • /
    • pp.19-33
    • /
    • 2022
  • Newmark's sliding block analysis is the most commonly used method for predicting earthquake-induced permanent displacement of embankment slopes. Additionally, it yields the amount of slip circle sliding using the limit equilibrium theory. Thus, permanent displacement does not occur until the seismic load exceeds the yield acceleration, which induces sliding of the slip circle. The evolution of Newmark's sliding block analysis has been made by introducing the numerical seismic response analysis results since it was introduced. This study compares seismic performance evaluation results for the example enclosure dam section with the analysis methods. As a result, earthquake-induced permanent displacement using Newmark's sliding block analysis did not occur for the enclosure dam, indicating a high safety factor. However, nonlinear response history analysis gave reasonable results.

Reinforcing Effect of Buildings Considering Load Distribution Characteristics of a Pre-compressed Micropile (선압축 보강마이크로파일의 하중분담 특성을 고려한 건물 보강효과에 대한 연구)

  • Lee, Kwang Hoon;Park, Yong Chan;Moon, Sung Jin;You, Kwang Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.825-836
    • /
    • 2022
  • Micropiles can be used to support additional load in extended building structures. However, their use brings about a risk of exceeding the bearing capacity of existing piles. In this study, pre-compression was applied to distribute the load of an existing building to micropiles, and an indoor loading test was performed to confirm the structural applicability of a wedge-type anchorage device designed to improve its capacity. According to the test results, the maximum strain of the anchorage device was 0.63 times that of the yield strain, and the amount of slip generated at the time of anchorage was 0.11 mm, satisfying structural standards. In addition, using MIDAS GTS, a geotechnical finite element analysis software, the effect of the size of the pre-compression, the thickness of the soil layer, and the ground conditions around the tip on the reaction force of the existing piles and micropiles were analyzed. From the numerical analysis, as the size of the pre-compression load increased, the reaction force of the existing pile decreased, resulting in a reduction rate of up to 36 %. In addition, as the soil layer increased by 5 m, the reduction rate decreased by 4 %, and when the ground condition at the tip of the micropile was weathered rock, the reduction rate increased by 14 % compared with that of weathered soil.

Development of Elastic-Plastic Fracture Analysis Program for Structural Elements under an Impact Loadings (충격하중을 받는 구조부재의 탄소성 파괴해석 프로그램 개발)

  • K.S. Kim;J.B. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.1
    • /
    • pp.61-71
    • /
    • 1998
  • This paper describes a dynamic fracture behaviors of structural elements under elastic or elasto-plastic stress waves in two dimensional space. The governing equation of this problem has the type of hyperbolic partial differential equation, which consists of the equation of motions and incremental elasto-plastic constitutive equations. To solve this problem we introduce Zwas' method which is based on the finite difference method. Additionally, in order to deal with the dynamic behavior of elasto-plastic problems, an elasto-plastic loading path in the stress space is proposed to model the plastic yield phenomenon. Based on the result of this computation, the dynamic stress intensity factor at the crack tip of an elastic material is calculated, and the time history of a plastic zone of a elasto-plastic material is to be shown.

  • PDF

Technique to Evaluate Safety and Loaded Heavy Equipment Grade in RC Building during Demolition Work (RC건축물 해체공사의 안전성 평가기법 및 탑재장비 등급 제안)

  • Park, Seong-Sik;Lee, Bum-Sik;Kim, Hyo-Jin;Sohn, Chang-Hak
    • Land and Housing Review
    • /
    • v.2 no.2
    • /
    • pp.195-204
    • /
    • 2011
  • During mechanical demolition of RC structures, weights of dismantling equipment and demolition waste of building are applied to unexpected load which did not be considered during the design of structural member. Nevertheless, the loading of dismantling equipment and dismantling process are mainly dependent on field managers' field workers' or experiences without considering safety of structural member by a structural engineer. It is urgently required that reflecting actual circumstance of mechanical demolition, safety evaluation method to evaluate the safety and the guideline for appropriate capacity of structural member to support dismantling equipment weight, be provided. Through site investigation and questionnaire on field workers, this paper proposed demolition waste load, load factor, strength reduction factor, and so on. These are essential to safe evaluation of a building, ready to demolition. Considering actual circumstance of mechanical demolition, safety evaluation method of building and design method of slab and beam was suggested to a dilapidated building. An capability to loading of dismantling equipment was proposed, applied to RC slab and RC beam. Therefore, the suggested safety evaluation method and the guideline for an capability to loading of dismantling equipment weight can reasonably evaluate the capacity of structural member in demolition and use effectively as increasing efficiency and improving safety of demolition through proper management of dismantling equipments.

An Analytical Study for the Stair Joints Constructed with Prefabricated Form System (선시공 조립식 거푸집 공법을 이용한 계단 접합부의 접합방식에 따른 해석적 연구)

  • Lee, Eun-Jin;Jin, Byung-Chang;Chang, Kug-Kwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.301-304
    • /
    • 2008
  • The stair joints constructed with prefabricated system are general method doing structure design at hinge. If you regarded joints to come in contact with a flight of stairs and a slope of stairs as hinge, the moment performance of joints is not in the least moment, so as the bending moment of the stair case is increased, the reinforcement increase. Also the use is decreased because increasing the joint damage of the vibration & fatigue load. No less the reason constructed with pin the stair joints because the construction efficiency of field work is useable. Recently, they are considering the construction efficiency, while the semi-rigid detail for bending performance of joints is proposed, but for now they don't reflect the detail. Therefore, we proposed that reflecting the method at design semi-rigid joints. We compared the moment performance with the stair joints designed at the rigid joints, semi-rigid joints and pin joints. The nonlinear behavior of staircase core statically indeterminate structure. The result of research is that a bending stiffness modulus bring to reflect the semi-rigid performance, the performance of the semi-rigid joint is better than pin joints, and that is judged the system better seismic and vibration performance because have excellent ductility more than rigid joint.

  • PDF

A Study on 8-Stage Loading Method of the Scaffolding Module for LNG Carriers (LNG 운반선 비계 모듈의 8단 탑재 방안 연구)

  • Shin, Sang-Hoon;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.78-85
    • /
    • 2020
  • The scaffolding system, which is a construction workbench of the cargo containment for a membrane LNG carrier, is a large truss structure composed of various members. To shorten the installation period and process of the scaffolding system, it is effective to enlarge the mounting unit from the existing two stages to eight stages. Owing to the increase in lifting load according to the large size of the module, the stresses around the pin and hole will be increased significantly. In this study, a tensile strength test and contact stress analysis were performed to confirm the structural safety. The relatively large hole deformation was observed visually near the average load generated in the vertical pipe at the top through tensile strength tests. A contact stress calculation confirmed the stress distribution around the hole. The contact problem was dealt with in terms of the Herzian contact stress. The possibility of 8-stage loading was examined by comparing the yield strength and contact stresses of failure critical locations. As a result, the 8-stage loading method of the existing scaffolding material was inadequate, and a new loading method with proper safety is proposed.

A Study on Loading Method of Large Scaffolding Module for LNG Carriers Using TRIZ (TRIZ를 이용한 LNG 운반선 대형 비계 모듈의 탑재 방안 연구)

  • Park, Myeong-Chul;Shin, Sang-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.94-100
    • /
    • 2021
  • To improve the productivity of cargo containment construction for a membrane LNG carrier, it is important to shorten the installation period and process of the scaffolding system, which is a construction workbench of a cargo containment for a membrane LNG carrier. As an effective method, opinions are being gathered to enlarge the lifting unit from the existing two stages to eight stages. On the other hand, the stresses around the pin and hole will increase significantly because of the increase in lifting load according to the large size of the module. The purpose of this study was to establish a new large module-lifting plan by introducing TRIZ to solve these problems. This study adopted a method to utilize 40 inventive principles, which is one of the various problem-solving tools of TRIZ. First, technical contradictions were derived, the engineering parameters were selected. Second, efficient inventive principles were selected to overcome the technical contradictions using a contradiction matrix. Finally, the general and specific solutions were derived through the selected inventive principle, and structural analysis confirmed that the stress generated in the structure was low. The utility of TRIZ was confirmed by the successful lifting of large modules using the established lifting method.

Centrifuge Model Test on the Bearing Capacity and Failure Mechanism of Composit Ground Improved with Slag Compaction Piles (슬래그 다짐말뚝으로 개량된 복합지반의 지지력 및 파괴메카니즘에 관한 원심모형실험)

  • Yoo Nam-Jae;Park Byung-Soo;Jeong Gil-Soo;Koh Kyung-Hwan;Kim Ji-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.1
    • /
    • pp.59-67
    • /
    • 2005
  • This paper presents experimental and numerical research results of centrifuge model tests performed to investigate the geotechnical engineering behavior of slag compaction pile as a substitute of sand compaction pile. For centrifuge model tests, bearing capacity of composit soil improved with slag compaction piles, stress concentrations in-between pile and soft clay, settlement characteristics, and failure modes were investigated with slags differing in their relative density. A slag was found to be a good substitute for a sand since the slag compaction pile model showed a greater yield stress intensity up to $30\%$ than the sand compaction pile model under the identical testing conditions. Stress concentration ratio tended to increase with the relative density of slag pile and the clear shear lines in the piles were observed at the depth of $2D{\sim}2.5D$ (D=dia. of model pile) from the top of the piles after loading tests. Numerical analysis with a software of CRISP, implemented with the modified Cam-clay model, was carried out to simulate the results of centrifuge model test. Test results about characteristics of load-settlement curves and stress concentration ratio are in relatively good agreements with numerical estimations.