• Title/Summary/Keyword: 항법 장치

Search Result 373, Processing Time 0.026 seconds

Analysis of Alignment Accuracy due to Velocity/Attitude Error of Master Inertial Navigation System in Velocity/Attitude Matching Transfer Alignment (속도/자세 정합 전달정렬에서 주 관성항법장치 속도/자세 오차에 의한 정렬 정확도 분석)

  • Cheonjoong Kim;Inseop Lee;Chansik Park;Junmin Park
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.544-557
    • /
    • 2024
  • This paper theoretically analyzes the effect of the velocity and attitude errors of Master Inertial Navigation System(MINS) on the accuracy of Slave Inertial Navigation System(SINS) transfer alignment in velocity and attitude matching, and validates the analysis through simulation. Theoretical analysis involves deriving a new state equation that considers the velocity and attitude errors of MINS from the state equation of the transfer alignment filter, and deriving the state estimation equation of the Kalman filter based on this. The analysis confirms that MINS's velocity and attitude errors induce the same level of velocity and attitude errors in SINS. A reference inertial navigation system model is added to the simulation model, and the transfer alignment accuracy is analyzed by comparing the navigation information of MINS and SINS with the reference inertial navigation system. It is confirmed that the accuracy analysis results through simulation are consistent with the theoretically analyzed results, and through this, the validity of the theoretically analysis in this paper is verified. The research findings indicate that when performing transfer alignment using MINS, which is likely to be operated for prolonged periods in pure inertial navigation mode, the navigation errors of MINS are transferred to SINS. This implies that initial correction navigation is necessary to be considered for SINS

Stereo Semi-direct Visual Odometry with Adaptive Motion Prior Weights of Lunar Exploration Rover (달 탐사 로버의 적응형 움직임 가중치에 따른 스테레오 준직접방식 비주얼 오도메트리)

  • Jung, Jae Hyung;Heo, Se Jong;Park, Chan Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.6
    • /
    • pp.479-486
    • /
    • 2018
  • In order to ensure reliable navigation performance of a lunar exploration rover, navigation algorithms using additional sensors such as inertial measurement units and cameras are essential on lunar surface in the absence of a global navigation satellite system. Unprecedentedly, Visual Odometry (VO) using a stereo camera has been successfully implemented at the US Mars rovers. In this paper, we estimate the 6-DOF pose of the lunar exploration rover from gray images of a lunar-like terrains. The proposed algorithm estimates relative pose of consecutive images by sparse image alignment based semi-direct VO. In order to overcome vulnerability to non-linearity of direct VO, we add adaptive motion prior weights calculated from a linear function of the previous pose to the optimization cost function. The proposed algorithm is verified in lunar-like terrain dataset recorded by Toronto University reflecting the characteristics of the actual lunar environment.

Double Demodulation of a Ring Laser Dither Signal for Reducing the Dynamic Error of an Inertial Navigation System (관성항법장치의 동적오차 개선을 위한 링레이저 각진동 신호의 이중 복조방법)

  • Shim, Kyu-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.82-89
    • /
    • 2014
  • This paper discusses the methods for reducing the sampling time quantization errors of the body dither type ring laser gyroscope. A ring laser gyroscope has the angle quantization error which is generated by the frequency counting method of the laser beat signal and sampling time quantization error which is generated by the demodulation method for eliminating the body dithering in which the sampling periods are fitted to the dither periods. Generally, because the dither periods are longer than the calculation periods of the inertial navigation system, vehicle navigation errors are produced by long time attitude update missing during the vehicle move with a high dynamical motion. In this paper, the double demodulation method is proposed for reducing the sampling time quantization error and its effects under the dynamic situation are confirmed by simulation.

Underwater Hybrid Navigation System Based on an Inertial Sensor and a Doppler Velocity Log Using Indirect Feedback Kalman Filter (간접 되먹임 필터를 이용한 관성센서 및 초음파 속도센서 기반의 수중 복합항법 시스템)

  • Lee, Chong-Moo;Lee, Pan-Mook;Seong, Woo-Jae
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.149-156
    • /
    • 2003
  • This paper presents an underwater hybrid navigation system for a semi-autonomous underwater vehicle (SAUV). The navigation system consists of an inertial measurement unit (IMU), an ultra-short baseline (USBL) acoustic navigation sensor and a doppler velocity log (DVL) accompanying a magnetic compass. The errors of inertial measurement units increase with time due to the bias errors of gyros and accelerometers. A navigational system model is derived to include the error model of the USBL acoustic navigation sensor and the scale effect and bias errors of the DVL, of which the state equation composed of the navigation states and sensor parameters is 25 in the order. The conventional extended Kalman filter was used to propagate the error covariance, update the measurement errors and correct the state equation when the measurements are available. Simulation was performed with the 6-d.o.f. equations of motion of SAUV in a lawn-mowing survey mode. The hybrid underwater navigation system shows good tracking performance by updating the error covariance and correcting the system's states with the measurement errors from a DVL, a magnetic compass and a depth senor. The error of the estimated position still slowly drifts in horizontal plane about 3.5m for 500 seconds, which could be eliminated with the help of additional USBL information.

  • PDF

SDINS/GPS/ZUPT Integration Land Navigation System for Azimuth Improvement (방위각 개선을 위한 SDINS/GPS/ZUPT 결합 지상 항법 시스템)

  • Lee, Tae-Gyoo;Cho, Yun-Cheol;Jang, Suk-Won;Park, Jai-Yong;Sung, Chang-Ky
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.1 s.24
    • /
    • pp.5-12
    • /
    • 2006
  • This study describes an SDINS/GPS/ZUPT integration algorithm for land navigation systems. The SDINS error can be decoupled in two parts. The first part is the the Schuler component which does not depend on object motion parameters, and the other is the Non-Schuler part which depends on the product of object acceleration and azimuth error. Azimuth error causes SDINS error in proportion to the traversed distance. The proposed system consists of a GPS/SDINS integration system and an SDINS/ZUPT integration system, which are both realized by an indirect feedforward Kalman filter. The main difference between the two is whether the estimate includes the Non-Schuler error or not, which is decided by the measurement type. Consequently, subtracting GPS/SDINS outputs from SDINS/ZUPT outputs provide the Non-Schuler error information which can be applied to improving azimuth accuracy. Simulation results using the raw data obtained from a van test attest that the proposed SDINS/GPS/ZUPT system is capable of providing azimuth improvement.

아리랑 위성 2호의 시간동기

  • Kwon, Ki-Ho;Kim, Dae-Young;Chae, Tae-Byung;Lee, Jong-In
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.109-116
    • /
    • 2004
  • In a satellite time management system, the GPS-based clock synchronization technique[1] has the merits of precision time management by knowing the time difference or the error between the OBT(On Board Time) of the internal processors and GPS time every second. It can be realized employing the DPLL(Digital Phase Loop Lock) and FEP(Front End Processor) circuitry for the clock synchronization[2]. In this paper, a refined DPLL & FEP scheme is proposed to provide the precision, stability and robustness of the operation, which is to compensate the errors and noise of the GPS signal, and also to cope with the case when the GPS signal is lost due to several reasons. The simulation and HIL (Hardware In the Loop) test results using the FM(Flight Model) in the course of KOMPSAT-2(Korea Multi Purpose Satellite-2) design and development are illustrated to demonstrate the salient features of this methodology.

  • PDF

Classification of Map-matching Techniques and A Development (맵매칭 기술의 분류 및 맵매칭 알고리즘의 개발)

  • Chung, Youn-Shik;Yoon, Hang-Mook;Choi, Kee-Choo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.8 no.1 s.15
    • /
    • pp.73-84
    • /
    • 2000
  • Map matching technique is an essential part of the car navigation and other related positioning fields such as dead reckoning and GPS data logging upon the GIS database. This paper is to break down map matching techniques, to categorize them, and to propose a simple technique for GPS based map matching technique. For categorization of techniques, two approaches have been adopted. One is to only use geometric information, and the other is to use both geometric and topological information. Some pros and cons of each method have been described. In addition, a simple map matching technique, set forth in this paper, has been introduced for properly utilizing the advantage of GPS points after the absence of the chronic problem of selective availability, which had been prevailed recently. Some research opportunities and problems of the technique have also been discussed.

  • PDF

A Study on Improvement of the Ship's Bearing Information using CPS (위성항법 정보를 이용한 선박의 방위정보 향상에 관한 연구)

  • 고광섭;임봉택;최우영;최창묵
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.101-105
    • /
    • 2004
  • The purpose of the study is to develop ship's bearing sensor using CPS receiver which can play a role as a ship's secondary compass. In this research, two GPS receivers are used to determine the bearing in real time. Then we investigated the bearing accuracy associated with the error pattern of two GPS receivers. Especially, the results are as follows ; - The investigation on the system design of GPS-Compass - The modeling to compute heading of sailing - The analysis on bearing accuracy with the error pattern - The defining possibility to play a role as a ship's secondary compass

  • PDF

The Study on The Production Testing Equipment for the Improvement of System Test Reliability in FCS (사격통제장치 시스템 시험의 신뢰성 향상을 위한 생산시험장비에 관한 연구)

  • Choi, Kyungjin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.139-147
    • /
    • 2016
  • This study described the design scheme for each step of the production test for the Fire Control System(FCS) of the K-55A1 PIP business of Hanwha Thales since 2011. From the time of receipt of the product It is necessary to improve the FCS's reliability by using the Unit Test, burn-In test, System Test. FCS of K-55A1 acts as a 'head' that control the self-propelled howitzer, and connected with the electrical and physical connection of self-propelled howitzer's multiple unit (Inertial navigation systems(IN), Muzzle Velocity Radar (MVR)) for the normal operation without an inch of error in operating. We designed the production testing equipment automatically as much as possible and designed with the environment similar to the self-propelled howitzer. by using this production testing equipment, It should help for the strengthen national defense of the Republic of Korea.

발사체 추력백터제어 구동장치용 컴퓨터 하드웨어 설계

  • Park, Moon-Su;Lee, Hee-Joong;Min, Byeong-Joo;Choi, Hyung-Don
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.56-64
    • /
    • 2004
  • In this research, design results of computer hardware which control solid motor movable nozzle thrust vector control(TVC) actuator for Korea Space Launch Vehicle I(KSLV-I) are described. TVC computer hardware is the equipment which has jobs for receiving control commands from Navigation Guidance Unit(NGU) and then actuating TVC actuator. Also, it has ability to communicate with other on board or ground equipments. Computer hardware has a digital signal processor as the main processor which is capable of high speed calculating ability of control algorithm, so it can have more stability, reliability and flexibility than the previous analog controller of KSR-III. Target board was designed for on board program development and then first prototype hardware was developed. Top level system design criteria, hardware configurations and ground support equipment of TVC computer system are described.

  • PDF