• Title/Summary/Keyword: 항법알고리즘

Search Result 280, Processing Time 0.028 seconds

The Pathplanning of Navigation Algorithm using Dynamic Window Approach and Dijkstra (동적창과 Dijkstra 알고리즘을 이용한 항법 알고리즘에서 경로 설정)

  • Kim, Jae Joon;Jee, Gui-In
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.94-96
    • /
    • 2021
  • In this paper, we develop a new navigation algorithm for industrial mobile robots to arrive at the destination in unknown environment. To achieve this, we suggest a navigation algorithm that combines Dynamic Window Approach (DWA) and Dijkstra path planning algorithm. We compare Local Dynamic Window Approach (LDWA), Global Dynamic Window Approach(GDWA), Rapidly-exploring Random Tree (RRT) Algorithm. The navigation algorithm using Dijkstra algorithm combined with LDWA and GDWA makes mobile robots to reach the destination. and obstacles faced during the path planning process of LDWA and GDWA. Then, we compare on time taken to arrive at the destination, obstacle avoidance and computation complexity of each algorithm. To overcome the limitation, we seek ways to use the optimized navigation algorithm for industrial use.

  • PDF

MEMS IMU 기반 무인기 항법 시스템 설계와 성능 분석

  • Kim, Seong-Cheol;Park, Ji-Hwan;Hong, Jin-Seok;Song, Jin-U;Mun, Jeong-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.475-478
    • /
    • 2006
  • 본 논문에서는 소형 무인항공기의 정확한 위치, 속도, 자세 정보를 제공하기 위해 저급의 MEMS IMU를 이용한 항법 시스템을 제안한다. 제안하는 시스템은 비행체의 직선운동과 회전운동을 측정할 수 있는 관성측정기와 위성신호를 수신하여 항체의 위치, 속도 정보를 제공하는 GPS 수신기, 지구 자기장 정보를 이용하여 방향각 정보를 제공하는 지자기 센서들로 구성되었다. SDINS와 약결합 방식의 칼만필터를 이용한 항법 시스템은 초기정렬 알고리즘과 센서 오차 보상 알고리즘, 자력계 보상 알고리즘 및 복합항법 알고리즘으로 나뉘며, 설계된 항법 알고리즘들은 시뮬레이션과 차량 실험을 통해서 성능을 분석하였다.

  • PDF

ASF 보상 방법에 따른 eLoran/GPS 통합항법 알고리즘 성능 개선

  • Song, Se-Pil;Jo, Seong-Han;Choe, Heon-Ho;Kim, Yeong-Baek;Lee, Sang-Jeong;Park, Chan-Sik
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.11a
    • /
    • pp.193-195
    • /
    • 2011
  • GPS는 높은 정확도를 갖지만 신호 간섭에 취약하다. 따라서 Loran-C의 정확도를 개선한 eLoran이 GPS의 보조항법 시스템으로 고려되고 있다. 본 논문에서는 eLoran/GPS 통합 항법 알고리즘에서 eLoran의 오차 요소인 ASF를 보상하는 방법에 따른 위치추정 결과의 정확도를 분석한다.

  • PDF

Ionospheric Modeling using Wavelet for WADGPS (Wavelet을 이용한 광역보정위성항법을 위한 전리층 모델링)

  • Sohn, Kyoung-Ho;Kee, Chang-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.4
    • /
    • pp.371-377
    • /
    • 2007
  • Ionospheric time delay is one of the main error source for single-frequency DGPS applications, including time transfer and Wide Area Differential GPS (WADGPS). Grid-based algorithm was already developed for WADGPS but that algorithm is not applicable to geomagnetic storm condition in accuracy and management. In geomagnetic storm condition, the spatial distribution of vertical ionospheric delay is noisy and therefore the accuracy of modeling become low in grid-based algorithm. For better accuracy, function based algorithm can be used but the continuity of correction message is not guranteed. In this paper, we propose the ionospheric model using wavelet based algorithm. This algorithm shows better accuracy with the same number of correction message than the existing spherical harmonics algorithm and guarantees the continuity of correction messages when the number of message is expanded for geomagnetic storm condition.

  • PDF

Hybrid Dual Quaternion Algorithm For Precise Strapdown Inertial Navigation (정밀 스트랩다운 관성항법을 위한 혼합 이체쿼터니언 알고리즘)

  • Shim, Ju-Young;Lee, Han-Sung;Park, Chan-Gook;Yu, Myeong-Jong;Lee, Hyung-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.627-632
    • /
    • 2007
  • Dual quaternion is efficient methodology to express rotation and translation of the vehicle's movements in the unified frame work. Recently, a strapdown inertial navigation algorithm based on dual quaternion was introduced. By comparing and analyzing the classical and dual-quaternion algorithms, this paper proposes a new strapdown inertial navigation algorithm that maintains the accuracy benefit of the dual-quaternion algorithm with considerable computational reduction. Simulation results show the efficiency of the proposed hybrid strapdown navigation algorithm.

Performance Evaluation of Different Route Planning Algorithms in the Vehicle Navigation System (차량 항법 시스템의 경로 탐색을 위한 탐색 알고리즘들의 성능 비교)

  • Lee, Jae-Mu;Kim, Jong-Hoon;Jeon, H.-Seok
    • Journal of The Korean Association of Information Education
    • /
    • v.2 no.2
    • /
    • pp.252-259
    • /
    • 1998
  • Vehicle navigation systems employ a certain route planning algorithm that provides the shortest path between the starting point and the destination point. The performance of a given route planning algorithm is measured through the degree of optimal route selection and the time cost to complete searching an optimal path. In this paper, various route planning algorithms are evaluated through computer simulation based on a real digital map database. Among those algorithms evaluated in this paper, the Modified Bi-directional A${\ast}$ algorithm is found to be the best algorithm for use in vehicle navigation systems.

  • PDF

Implementation of GPS/Galileo Integrated Navigation Algorithm and Analysis of Different Time-Coordinate Effect (GPS/Galileo 통합항법알고리즘 구현 및 시각 및 좌표계차이에 따른 영향분석)

  • Song, Jong-Hwa;Jee, Gyu-In;Jeong, Seong-Kyun;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.171-178
    • /
    • 2008
  • Galileo is the Europe's global navigation satellite system corresponding to the GPS. The GIOVE-A test experiment has been finished and the second test satellite GIOVE-B will be launched soon. The integration of GPS and Galileo lead an increase of visible satellite number. We can obtain an improved navigation performance in signal blocked area such as urban or forest. GPS and Galileo have each time-coordinate system and use the different error model to calculate the navigation solution. In this paper, we studied on GPS and Galileo channel error model and time-coordinate system. Using this result, we implement the integrated navigation algorithm. In simulation, we analyzed the navigation error caused by time and coordinate disagreement and verified performance of integrated navigation algorithm in terms of visible satellite number, DOP(Dilution of Pression) and position error.

Implementation of Improved Ship Positioning Algorithm using Sextant (섹스탄트를 이용한 개선된 선박 측위 알고리즘의 구현)

  • Shin, Heui-han;Yim, Jae-hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1243-1251
    • /
    • 2017
  • When a Ship sails in the ocean, it is significant to find one's position for safe navigation. Most of ships have been using GPS navigation since its development after 1990's. The celestial navigation was used as the navigation method when sailing in the ocean, but time-consuming process such as complicated calculation and plotting the result on chart diminished its utilization. The thesis explains convenience and utilization of existing celestial navigation by resolving challenges it has. As a way of enhancing the celestial navigation, the author developed a software which incudes a numerical formula based on the previous calculation process. When a navigator inputs the altitude of sun, GHA and dec into computer while sailing, the position of the ship will be displayed as the coordinates. The improved method thus reaffirmed the usefulness of the celestial navigation and will greatly serve as means of navigation in the occurrence of distress. Abstract should be placed here.

Trajectory Generation, Guidance, and Navigation for Terrain Following of Unmanned Combat Aerial Vehicles (무인전투기 근접 지형추종을 위한 궤적생성 및 유도 항법)

  • Oh, Gyeong-Taek;Seo, Joong-Bo;Kim, Hyoung-Seok;Kim, Youdan;Kim, Byungsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.979-987
    • /
    • 2012
  • This paper implements and integrates algorithms for terrain following of UCAVs (Unmanned Combat Aerial Vehicles): trajectory generation, guidance, and navigation. Terrain following is very important for UCAVs because they perform very dangerous missions such as Suppression of Enemy Air Defences while the terrain following can improve the survivability of UCAVs against from the air defence systems of the enemy. To deal with the GPS jamming, terrain referenced navigation based on nonlinear filter is chosen. For the trajectory generation, Voronoi diagram is adopted to generate horizontal plane path to avoid the air defense system. Cubic spline method is used to generate vertical plane path to prevent collisions with ground while flying sufficiently close to surface. Follow-the-Carrot and pure pursuit tracking methods, which are look-ahead point based guidance algorithms, are applied for the guidance. Numerical simulation is performed to verify the performance of the integrated terrain following algorithm.

Relative Navigation Algorithm Using PSD and Heterogeneous Sensor Fusion (PSD와 이종 센서 융합을 이용한 상대 항법 알고리즘)

  • Kim, Dongmin;Yang, Seungwon;Kim, Domyung;Suk, Jinyoung;Kim, Seungkeun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.7
    • /
    • pp.513-522
    • /
    • 2020
  • This paper describes a relative navigation algorithm using PSD(Position Sensitive Detector) and heterogeneous sensor fusion. In order to perform relative navigation between a target and a chaser, a hardware system is constructed and simulations are conducted, using the relative navigation algorithm considering the hardware system. By analyzing errors through the simulations, advantages of using the heterogeneous sensor fusion are found. Finally, navigation performance is verified under an experimental environment established to obtain sensor data from the hardware system for data post-processing.