• Title/Summary/Keyword: 항법시스템 오차

Search Result 268, Processing Time 0.024 seconds

Performance Analysis of a GPS Receiver under the Vacuum Environments (진공환경에서 GPS 수신기의 성능분석)

  • Moon, Ji-Hyeon;Kwon, Byung-Moon;Shin, Yong-Sul;Choi, Hyung-Don
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.66-72
    • /
    • 2009
  • In order to verify the operability of a GPS receiver which is one of the KSLV-I onboard electrical equipments under the vacuum conditions, this paper describes the operation methods and performance results of the GPS receiver under the thermal-vacuum and vacuum environments. The damages and degradations of electrical parts of the GPS receiver caused by the pressure change and high-degree vacuum conditions are analyzed in terms of tracking and navigation capabilities through the signal-to-noise ratio and navigation error.

  • PDF

Performance Analysis of Ionospheric Delay Estimation for Multi-Constellation WA-DGNSS According to the Number of Reference Stations (기준국 수에 따른 다중 위성항법 광역보정시스템의 전리층 지연 추정 성능 분석)

  • Kim, Dong-Uk;Han, Deok-Hwa;Yun, Ho;Kee, Chang-Don;Seo, Seung-Woo;Park, Heung-Won
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.260-267
    • /
    • 2014
  • For the purpose of improving the accuracy of Wide Area Differential GNSS (WA-DGNSS), estimation performance of ionospheric delay error which has a great impact on GPS error sources should be enhanced. This paper applied multi-constellation GNSS which represents GPS in USA, GLONASS in Russia, and Galileo in Europe to WA-DGNSS algorithm in order to improve performance of ionospheric delay estimation. Furthermore, we conducted simulation to analyze ionospheric delay estimation performance in Korean region by increasing the number of reference stations. Consequently, using multi-constellation GNSS to improve performance of ionospheric delay estimation is more effective than increasing the number of reference stations in spite of similar number of measurements which are in use for estimation. We expect this result can contribute to improvement for ionospheric delay estimation performance of single-frequency SBAS (Satellite Based Augmentation System) user.

A quantitative analysis of synthetic aperture sonar image distortion according to sonar platform motion parameters (소나 플랫폼의 운동 파라미터에 따른 합성개구소나 영상 왜곡의 정량적 분석)

  • Kim, Sea-Moon;Byun, Sung-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.382-390
    • /
    • 2021
  • Synthetic aperture sonars as well as side scan sonars or multibeam echo sounders have been commercialized and are widely used for seafloor imaging. In Korea related research such as the development of a towed synthetic aperture sonar system is underway. In order to obtain high-resolution synthetic aperture sonar images, it is necessary to accurately estimate the platform motion on which it is installed, and a precise underwater navigation system is required. In this paper we are going to provide reference data for determining the required navigation accuracy and precision of navigation sensors by quantitatively analyzing how much distortion of the sonar images occurs according to motion characteristics of the platform equipped with the synthetic aperture sonar. Five types of motions are considered and normalized root mean square error is defined for quantitative analysis. Simulation for error analysis with parameter variation of motion characteristics results in that yaw and sway motion causes the largest image distortion whereas the effect of pitch and heave motion is not significant.

Assisted SBAS Global Navigation Satellite System Operation Method for Reducing SBAS Time to First Fix (SBAS 보강항법 초기 위치 결정 시간 단축을 위한 A-SGNSS 운용 방안)

  • Lee, Ju Hyun;Kim, Il Kyu;Seo, Hung Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.92-100
    • /
    • 2020
  • Satellite-based argumentation systems (SBAS) is a system that enhances the accuracy, integrity, availability and continuity of GNSS navigation users by using geostationary orbit (GEO) satellites to send correction information and the failures of global navigation satellite system (GNSS) satellites in the form of messages. The correction information provided by SBAS is pseudorange error, satellite orbit error, clock error, and ionospheric delay error at 250 bps. Therefore, A lot of message processing are required for the SBAS navigation. There is a need to reduce SBAS time to first fix (TTFF) for using SBAS navigation in systems with short operating time. In this paper, A-SGNSS operation method was proposed for reducing SBAS TTFF. Also, A-SGNSS TTFF and availability were analyzed.

Time Delay Error Analysis and Compensation Method of Integrated Navigation System for Aircraft Store (항공장착물의 전달정렬을 위한 통합항법장치 시간 지연 오차 분석 및 보상 기법)

  • Seo, Byung-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.7
    • /
    • pp.592-601
    • /
    • 2018
  • The GPS/INS integrated navigation system, which is one of the electronic equipments mounted on military aircraft store, can not directly receive GPS signals by the aircraft wing before the drop, so GPS navigation data is received from the aircraft and used for filter integration, afterwards, the integrated navigation is performed using the GPS information directly received through the antenna. In this case, it is possible to operate the mount in old aircraft without any modification of the aircraft when GPS data is transmitted using wireless. However, the delay occurs while the aircraft navigation data is transmitted to the integrated navigation filter of the aircraft store via wireless, which affects the time synchronization of the GPS measurement and the INS information, affecting the integrated navigation performance. In this paper, an algorithm to analyze and compensate the effect of generation and transmission delay that can occur when implementing GPS/INS integrated navigation system of aircraft store that receives GPS data via wireless.

GNSS integrity Performance analysis in Korean region (한국지역에서 GNSS 무결성 감시의 가용성 예측)

  • Shin, Dae-Sik;Cho, Jong-Chul;Kim, Yong-Hyun;Shin, Mi-Young;Han, Sang-Sul;Park, Chan-Sik;Jun, Hyang-Sig;Nam, Gi-Wook;Lee, Sang-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1101-1107
    • /
    • 2007
  • this paper, integrity analysis in Korean region using GPS, modernized GPS, Galileo, SBAS and GBAS is given. The simulation results show that Cat. I requirement can be met using modernized GPS and Galileo alone, however, Cat. II and III are not met even augmenting SBAS because of VPL. A more efficient augmentation such as GBAS reduces VPL to meet Cat. II and III requirements in Korean region. This result will be used to design and implement not only an augmentation system but also regional satellite navigation system.

Development of Altitude Determination System by Using GPS/INS/Baroaltimeter (GPS/INS/기압고도계를 결합한 고도 결정 시스템 개발)

  • Kim, Seong-Pil;Yoo, Chang-Sun;Salychev, Oleg-S.;Kim, Eung-Tai
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.51-56
    • /
    • 2005
  • This paper introduces an altitude determination algorithm using GPS/INS/Baroaltimeter and evaluates the algorithm by real field tests. The test results show that the proposed method can determine the altitude of an aircraft continuously and sensitively. Therefore, it is appropriate to be used as an altimeter for a flight control system, especially for the automatic take-off and landing. In addition, it is shown that the second and the third baro-inertial vertical channel damping methods are essentially complementary filters while the proposed scheme improves these complementary filters.

Design and Implementation of a 3D Pointing Device using Inertial Navigation System (관성항법시스템을 이용한 3D 포인팅 디바이스의 설계 및 구현)

  • Kim, Hong-Sop;Yim, Geo-Su;Han, Man-Hyung;Lee, Keum-Suk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.5
    • /
    • pp.83-92
    • /
    • 2007
  • In this paper, we present a design and implementation of three dimensional pointing device using Inertial Navigation System(INS) that acquires coordinates and location information without environmental dependancy. The INS measures coordinates based on the data from gyroscope and accelerometer and corrects the measured data from accelerometer using Kalman-Filter. In order to implement the idea of three dimensional pointing device, we choose a three dimensional Space-recognition mouse and use RFIC wireless communication to send a measured data to receiver for printing out the coordinate on display equipment. Based on INS and Kalman-Filter theoretical knowledge, we design and implement a three dimensional pointing device and verified the usability as an input device that can capture a human's move. also, we describe the applicability of this device in ubiquitous computing environment.

  • PDF

기상과 해양 DGPS 기준국 정확도 상관관계에 대한 연구

  • Im, Yeong-Min;Gu, Ja-Heon;Lee, Byeong-Gon;Son, Seon-Yeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.10a
    • /
    • pp.362-365
    • /
    • 2013
  • 최근 기존 관측장비들에 비해 저렴한 GPS를 이용한 기상 모니터링이 많이 활용되고 있다. 이용자에게 보다 정밀한 위치정보의 제공을 연구하기 위하여 위성항법중앙사무소 기반시스템을 응용하여, 대류권 습윤정보를 추출하여 기상과 위치오차와의 상관성을 분석하고자 한다.

  • PDF

Development of Wave Monitoring System using Precise Point Positioning (PPP 기반 항법 알고리즘을 이용한 파고 계측시스템 설계 및 구현)

  • Song, Se Phil;Cho, Deuk Jae;Park, Sul Gee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1055-1062
    • /
    • 2015
  • A GPS based wave height meter system is proposed in this paper. The proposed system uses a dual-frequency measurements, a precise GPS satellite information and a PPP-based navigation algorithm to estimate the position with high accuracy. This method does not need to receive corrections from the reference stations. Therefore, unlike RTK based wave meter, regardless of the distance to the reference stations, it is possible to estimate position with high accuracy. This system is very simple and accurate system, but accelerometer-based system requires the other sensors such as GPS. Because position error is accumulated in the accelerometer system and must be removed periodically for high accuracy. In order to get the measurements and test the proposed wave height meter system, a buoy equipped with the test platform is installed on the sea near by Jukbyeon habor in Uljin, Korea. Then, to evaluate the performance, compares built-in commercial wave height meter with proposed system.