• Title/Summary/Keyword: 항균활성도

Search Result 2,208, Processing Time 0.045 seconds

The Efficacy of Lowering Blood Glucose Levels Using the Extracts of Fermented Bitter Melon in the Diabetic Mice (당뇨 마우스에서 여주발효추출물의 혈당 강하 효능)

  • Park, Hye Seon;Kim, Woo Kyeong;Kim, Hyun Pyo;Yoon, Young Geol
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.3
    • /
    • pp.259-265
    • /
    • 2015
  • Momordica charantia, commonly known as bitter melon, has interesting pharmacological activities such as anticancer, antiviral, antibacterial, anti-inflammatory, analgesic, and antioxidant. As supported by recent scientific reports on the beneficial effects of M. charantia, it is one of the most promising functional plants for diabetes today. In this study, we fermented the bitter melon with lactic acid bacteria and investigated the capability of controlling diabetic conditions by decreasing the blood glucose levels. After extracting the fermented bitter melon with hot water or ethanol, we tested several biological activities using mouse models. When we tested the efficacy of the glycemic control, the extracts of fermented bitter melon significantly lowered the blood glucose levels of the alloxan-induced diabetic mice. We also found that the lactic acid bacteria-fermented bitter melon protected liver damages from the treatment of alloxan monohydrates and maintained low levels of triglycerides and high levels of HDL cholesterol in these mouse models. These results suggest that our approach on fermenting bitter melon and the extracts of fermented bitter melon could lead to the possibility of the development of functional foods that contain the effectiveness of controlling blood glucose and lipid levels as well as preventing liver damages.

Anti-bacterial and Anti-fungal Effects of Herbal Oil Made from Vateria acuminata Hyne (Vateria acuminata Hyne으로 만든 오일의 항세균 및 항진균 효과)

  • kim, Soo-Ji;Cabral, L.M Udaya;Hong, Jin-Young;Jo, Chang-Wook;Kim, Young-Hee;Choi, Jung-Eun
    • 보존과학연구
    • /
    • s.33
    • /
    • pp.5-17
    • /
    • 2012
  • An Ola leaf manuscript, which consists of words carved on an Ola leaf and is filled up with a mixture of herbal oils made from Vateria acuminata Hyne and charcoal, is one of the native writing media in Sri Lanka. According to historical records, Ola leaf manuscripts had been used from the 1st to the 18th century A.D. From the recent findings that Ola leaf manuscripts have been preserved well for the past 400 years and are in good state of preservation, it is supposed that herbal oils preserve Ola leaves against environmental and biological factors such as fungi and insects. To evaluate the anti-biological susceptibility of the herbal oils, the molds isolated from wooden printing blocks in Janggyeong Panjeon of Haeinsa Temple in South Korea and bacteria and fungi isolated from Ola leaves were cultured. After spreading the microorganisms suspension on an agar plate, a disk paper containing a certain volume of herbal oil was placed on the agar plate. It was found in the experiment that herbal oil exhibits a clear zone, which is optically clear and inhibits the growth of microorganisms, against some molds and bacteria. The study results indicate that the herbal oil from the plant Vateria acuminata Hyne has the anti-bacterial and anti-fungal properties.

  • PDF

Double-culture Method Enhances the in Vitro Inhibition of Atopy-inducing Factors by Lactococcus lactis (이중배양법에 따른 Lactococcus lactis의 아토피 유발인자 억제 효과 증대)

  • Jo, Yu Ran;Kang, Sang Mo;Kim, Hyun Pyo
    • Journal of Life Science
    • /
    • v.25 no.7
    • /
    • pp.810-818
    • /
    • 2015
  • We analyzed whether lactic acid bacteria could control the expression of IL-4 and IL-13 in activated mast cells and whether these bacteria could inhibit the activity of transcription factors such as GATA-1, GATA-2, NF-AT1, NF-AT2, and NF-κB p65. We previously described a technique for identification of lactic acid bacteria with anti-atopy functionality by confirming increased expression of CD4+/CD25+/foxp3+ in T cells. We also confirmed that a double-culture method increased the antibacterial activity of these lactic acid bacteria against Staphylococcus aureus (S. aureus). In the present study, we characterized the effect of lactic acid bacteria cultured by this double-culture method on inhibition of allergic inflammatory reactions of RBL-2H3 mast cells, a cellular model of atopic dermatitis. The strongest anti-allergic effects of the lactic acid bacteria were seen in the following order: Lactococcus lactis broth cultured with medium containing Lactobacillus plantarum culture supernatant > Lc. lactis > Lc. lactis broth cultured with medium containing Lb. plantarum culture supernatant > Lb. plantarum. Thus, Lc. lactis cultured in medium containing Lb. plantarum culture supernatant had the strongest inhibitory effect on the differentiation of mast cells during allergic reactions, which may be mediated through the selective regulation of expression of relevant genes.

Induction of Apoptosis by Ethanol Extract of Scutellaria baicalensis in Renal ell Carcinoma Caki-1 Cells (황금(黃芩) 에탄올 추출물에 의한 인체 신세포암 Caki-1 세포의 자가세포사멸 유도)

  • Hwang, Won Deok;Im, Yong-Gyun;Son, Byoung Yil;Park, Cheol;Park, Dong Il;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.23 no.4
    • /
    • pp.518-528
    • /
    • 2013
  • Scutellaria baicalensis, belonging to the family Labiatae, is widely distributed in Korea, China, Mongolia, and eastern Siberia. It has been used in traditional medicine for various diseases, such as dysentery, pyrexia, jaundice, and carbuncles. In addition, S. baicalensis is reported to possess various beneficial pharmacological activities, including anti-inflammatory, antidiabetic, antiviral, antihypertension, antioxidant, and anticancer effects. However, the molecular mechanisms of its anticancer activity have not been clearly elucidated. In the present study, we investigated the proapoptotic effects of ethanol extract of S. baicalensis (EESB) on human renal cell carcinoma Caki-1 cells. The anti-proliferative activity of EESB was associated with apoptosis induction, which was associated with the up-regulation of death receptor 4, the Fas ligand, and Bax and the down-regulation of Bid, XIAP, and cIAP-1 proteins. EESB treatment also induced mitochondrial dysfunction, proteolytic activation of caspase-3, -8, and -9 and degradation of caspase-3 substrate proteins, such as poly (ADP-ribose) polymerase, ${\beta}$-catenin, and phospholipase C-${\gamma}1$. However, pretreatment of a pan-caspase inhibitor, z-VAD-fmk, significantly attenuated the EESB-induced apoptosis. Taken together, these findings suggest that EESB may be a potential chemotherapeutic agent. Further studies will be needed to identify the active compounds that confer the anticancer activity of S. baicalensis.

Inhibition of Browning in Yam Fresh-cut and Control of Yam-putrefactive Bacterium Using Acetic Acid or Maleic Acid. (초산 및 말레산을 이용한 생마 신선편이 갈변억제 및 생마 저온부패균의 제어)

  • Ryu, Hee-Young;Kwun, In-Sook;Park, Sang-Jo;Lee, Bong-Ho;Sohn, Ho-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.2
    • /
    • pp.135-141
    • /
    • 2007
  • To increase the consumer acceptability of yam and the shelf-life of fresh-cut yam, organic acid-treated fresh-cut yam was prepared. When uncontaminated fresh-cut yam was stored at $4^{\circ}C$ for 14 days after treatment with 1% (v/w) organic acids, the browning and microbial putrefaction of fresh-cut yam were inhibited by treatment of acetic acid or maleic acid, whereas treatment of citric acid and ascorbic acid, commonly used browning inhibitors in food industry, did not show apparent effects on the browning and putrefaction of yam. The Inhibitory effects of acetic acid or maleic acid were superior than those of NaOCl (100 ppm), hydrogen peroxide (100 ppm) or commercially available washing solution. Also, treatments of 1% acetic acid, or 1% maleic acid Into artificially-contaminated yam $(10^5\;CFU/g-yam)$ showed strong inhibition of browning and putrefaction during long term storage at $4^{\circ}C$. The growth inhibition test indicated that 0.1% is enough to inhibit the growth of psychrotrophic yam-putrefactive Pseudomonas sp., and treatment of 0.1% acetic acid, or 0.1% maleic acid inhibited the browning and microbial putrefaction of fresh-cut yam. Our results suggested long-term distribution of yam or other root crops products is possible by treatment of organic acid, such as acetic acid, combined with aseptic vacuum packaging technology.

Effects of Clay Minerals Treatment on the Physicochemical Characteristics and Growth Inhibition of Microoganism of Some Foods (몇 가지 식품의 이화학적 특성 및 균증식 억제에 대한 점토광물 처리의 영향)

  • Jeong, Ok-Jin;Woo, Koan-Sik;Kim, Kwang-Yup;Lee, Hee-Bong;Jeong, Heon-Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.23-29
    • /
    • 2005
  • To investigate potential characteristics of clay minerals (illite, kaolin, zeolite, vermiculite, and bentonite) for food industry application, antioxidative properties of clay minerals, electron-donating ability (EDA), peroxide value (POV), and thiobabituric acid (TBA) were measured, and antimicrobial activity against several food spoilage microorganisms were evaluated by minimum inhibition concentration (MIC) method. Changes in components by cooking clay minerals added to stored rice were measured by GC-MS. DPPH (1,1-diphenyl-2-picrylhydrazyl) analysis results revealed bentonite has strongest EDA at 20.6%. Antioxidant activities measured based on POV were similar to DPPH results. Induction period of linoleic acid with vermiculite was longest among. TBA results revealed zeolite hasstrongest antioxidant ability. Growth inhibition against E. coli and S. aureuswas observed in illite, vermiculite, and zeolite. Aroma components indicated decrease in hex anal, pent anal, non anal, linoleate, stearic acid, and oleic acid when clay minerals were added to stored rice. These results indicate that several clay minerals have antioxidative and antimicrobial abilities and improve flavor profiles in stored rice.

Sanguinarine Increases Sensitivity of Human Gastric Adenocarcinoma Cells to TRAIL-mediated Apoptosis by Inducing DR5 Expression and ROS Generation (AGS 인체 위암세포에서 DR5의 발현 및 ROS 생성의 증가를 통한 sanguinarine과 TRAIL 혼합처리의 apoptosis 유도 활성 촉진)

  • Lee, Taek Ju;Im, Yong Gyun;Choi, Woo Young;Choi, Sung Hyun;Hwang, Won Deok;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.24 no.9
    • /
    • pp.927-934
    • /
    • 2014
  • Sanguinarine, a benzophenanthridine alkaloid originally derived from the root of Sanguinaria canadensis, has been shown to possess antimicrobial, antioxidant, and anti-cancer properties. Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is known to induce apoptosis in cancer cells, but not most normal cells and has shown efficacy in a phase 2 clinical trial, development of resistance to TRAIL by tumor cells is a major roadblock. Our previous study indicated that treatment with TRAIL in combination with subtoxic concentrations of sanguinarine sensitized TRAIL-mediated apoptosis in TRAIL-resistant human gastric carcinoma AGS cells; however, the detailed mechanisms are not fully understood. In this study, we show that sanguinarine sensitizes AGS cells to TRAIL-mediated apoptosis as detected by MTT assay, agarose gel electrophoresis, chromatin condensation and flow cytometry analysis. Combined treatment with sanguinarine and TRAIL effectively induced expression of death receptor (DR) 5 but did not affect expression of DR4 and mitogen activated protein kinases signaling molecules. Moreover, the combined treatment with sanguinarine and TRAIL increased the generation of reactive oxygen species (ROS); however, N-acetylcysteine, ROS scavenger, significantly recovered growth inhibition induced by the combined treatment. Taken together, our results indicate that sanguinarine can potentiate TRAIL-mediated apoptosis through upregulation of DR5 expression and ROS generation.

Bacterial Toxin-antitoxin Systems and Their Biotechnological Applications (박테리아의 toxin-antitoxin system과 생명공학기술 응용)

  • Kim, Yoonji;Hwang, Jihwan
    • Journal of Life Science
    • /
    • v.26 no.2
    • /
    • pp.265-274
    • /
    • 2016
  • Toxin-antitoxin (TA) systems are ubiquitous genetic modules that are evolutionally conserved in bacteria and archaea. TA systems composed of an intracellular toxin and its antidote (antitoxin) are currently classified into five types. Commonly, activation of toxins under stress conditions inhibits diverse cellular processes and consequently induces cell death or reversible growth inhibition. These effects of toxins play various physiological roles in such as regulation of gene expression, growth control (stress response), programmed cell arrest, persister cells, programmed cell death, phage protection, stabilization of mobile genetic elements or postsegregational killing of plasmid-free cells. Accordingly, bacterial TA systems are commonly considered as stress-responsive genetic modules. However, molecule screening for activation of toxin in TA system is available as development of antimicrobial agents. In addition, cytotoxic effect induced by toxin is used as effective cloning method with antitoxic effect of antitoxin; consequently cells containing cloning vector inserted a target gene can survive and false-positive transformants are removed. Also, TA system is applicable to efficient single protein production in biotechnology industry because toxins that are site-specific ribonuclease inhibit protein synthesis except for target protein. Furthermore, some TA systems that induce apoptosis in eukaryotic cells such as cancer cells or virus-infected cells would have a wide range of applications in eukaryotes, and it will lead to new ways of treating human disease. In this review, we summarize the current knowledge on bacterial TA systems and their applications.

Fermentation Characteristics of Kochujang Containing Horseradish or Mustard (양고추냉이와 겨자 분말을 첨가한 고추장의 발효특성)

  • Shin, Dong-Hwa;Ahn, Eun-Young;Kim, Yong-Suk;Oh, Ji-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.1350-1357
    • /
    • 2000
  • Traditional Kochujang was prepared adding horseradish or mustard powder to repress the gas formation which used to cause swelling problem during distribution. The koji for Kochujang was prepared by the strains which had high amylase and protease activities with superior flavor. The gas production from Kochujang during fermentation at $25^{\circ}C$ was ceased after stopping yeast growth completely by bactericidal components from $0.6{\sim}1.2%(w/w)$ of horseradish or mustard addition. Total viable bacterial count was not affected by adding horseradish or mustard. The amino type nitrogen content in Kochujang, which was one of the most important parameters in quality of Kochujang, increased continually during fermentation. The Kochujang fermented by P-2 isolate and added with mustard was significantly higher in amino type nitrogen content than other treatments after 120 days' fermentation. ${\alpha}-Amylase$ activity was very low while ${\beta}-amylase$ activity was high in Kochujang fermented by adding horseradish and mustard powder. The protease(acid and neutral) activities gradually increased by fermentation with no difference between treatments. The color and flavor were not different, but overall palatability of the Kochujang evaluated by sensory test showed significantly high rank in Kochujang fermented by P-2 isolate and with horseradish.

  • PDF

Study on the Bioactive Characteristics of Morinda citrifolia as a Cosmetic Raw Material (화장품 소재로서의 노니 추출물에 관한 특성연구)

  • Kim, Seung-Heui;JANG, HYE-JIN
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.2
    • /
    • pp.183-193
    • /
    • 2016
  • This study attempted to investigate the possibility of the use of Morinda citrifolia (MC) as a cosmetic ingredient from its physiological activities such as antioxidant activity, cytotoxicity and anti-aging effect. MC is a tropical plant that has been used as traditional polynesian foods and medicines for over two thousand years. It has been reported that this shrub can improve antimicrobial, anti-cancer and anti-inflammatory effects and strengthen an immune system. The in vitro antioxidant activity of MC was performed to see the DPPH scavenging activity by measuring total polyphenol content and total flavonoid content. As a result, a lack of any cytotoxicity was confirmed in human dermal fibroblasts (HDF) cell. When MC extract at a concentration of over $50{\sim}100{\mu}g/mL$ was added, MMP-1 expression considerably diminished. In an in vivo test, in addition, cream containing MC extract was prepared and applied to a total of 22 women in their 30 ~ 50s in ages in the morning and in the evening for four weeks. Changes in keratin, melanin index, pore, skin color and wrinkles under the naked eyes were then comparatively measured. Keratin levels slightly increased in the control group but decreased in the experimental group. In addition, wrinkles diminished in the experimental group. This study found that MC extract controls many MMP-1 related mechanisms with great potential for use as a natural ingredient of anti-aging cosmetics.