• Title/Summary/Keyword: 항공 초분광영상

Search Result 35, Processing Time 0.025 seconds

A Study on the Object-based Classification Method for Wildfire Fuel Type Map (산불연료지도 제작을 위한 객체기반 분류 방법 연구)

  • Yoon, Yeo-Sang;Kim, Youn-Soo;Kim, Yong-Seung
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.213-221
    • /
    • 2007
  • This paper showed how to analysis the object-based classification for wildfire fuel type map using Hyperion hyperspectral remote sensing data acquired in April, 2002 and compared the results of the object-based classification with the results of the pixel-based classification. Our methodological approach for wildfire fuel type map firstly processed correcting abnormal pixels and atypical bands and also calibrating atmospheric noise for enhanced image quality. Fuel type map is characterized by the results of the spectral mixture analysis(SMA). Object-based approach was based on segment-based endmember selection, while pixel-based method used standard SMA. To validate and compare, we used true-color high resolution orthoimagery.

  • PDF

Hyperspectral Target Detection by Iterative Error Analysis based Spectral Unmixing (Iterative Error Analysis 기반 분광혼합분석에 의한 초분광 영상의 표적물질 탐지 기법)

  • Kim, Kwang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.547-557
    • /
    • 2017
  • In this paper, a new spectral unmixing based target detection algorithm is proposed which adopted Iterative Error Analysis as a tool for extraction of background endmembers by using the target spectrum to be detected as initial endmember. In the presented method, the number of background endmembers is automatically decided during the IEA by stopping the iteration when the maximum change in abundance of the target is less than a given threshold value. The proposed algorithm does not have the dependence on the selection of image endmembers in the model-based approaches such as Orthogonal Subspace Projection and the target influence on the background statistics in the stochastic approaches such as Matched Filter. The experimental result with hyperspectral image data where various real and simulated targets are implanted shows that the proposed method is very effective for the detection of both rare and non-rare targets. It is expected that the proposed method can be effectively used for mineral detection and mapping as well as target object detection.

The Ship Detection Using Airborne and In-situ Measurements Based on Hyperspectral Remote Sensing (초분광 원격탐사 기반 항공관측 및 현장자료를 활용한 선박탐지)

  • Park, Jae-Jin;Oh, Sangwoo;Park, Kyung-Ae;Foucher, Pierre-Yves;Jang, Jae-Cheol;Lee, Moonjin;Kim, Tae-Sung;Kang, Won-Soo
    • Journal of the Korean earth science society
    • /
    • v.38 no.7
    • /
    • pp.535-545
    • /
    • 2017
  • Maritime accidents around the Korean Peninsula are increasing, and the ship detection research using remote sensing data is consequently becoming increasingly important. This study presented a new ship detection algorithm using hyperspectral images that provide the spectral information of several hundred channels in the ship detection field, which depends on high resolution optical imagery. We applied a spectral matching algorithm between the reflection spectrum of the ship deck obtained from two field observations and the ship and seawater spectrum of the hyperspectral sensor of an airborne visible/infrared imaging spectrometer. A total of five detection algorithms were used, namely spectral distance similarity (SDS), spectral correlation similarity (SCS), spectral similarity value (SSV), spectral angle mapper (SAM), and spectral information divergence (SID). SDS showed an error in the detection of seawater inside the ship, and SAM showed a clear classification result with a difference between ship and seawater of approximately 1.8 times. Additionally, the present study classified the vessels included in hyperspectral images by presenting the adaptive thresholds of each technique. As a result, SAM and SID showed superior ship detection abilities compared to those of other detection algorithms.

Simulation of Sentinel-2 Product Using Airborne Hyperspectral Image and Analysis of TOA and BOA Reflectance for Evaluation of Sen2cor Atmosphere Correction: Focused on Agricultural Land (Sen2Cor 대기보정 프로세서 평가를 위한 항공 초분광영상 기반 Sentinel-2 모의영상 생성 및 TOA와 BOA 반사율 자료와의 비교: 농업지역을 중심으로)

  • Cho, Kangjoon;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.251-263
    • /
    • 2019
  • Sentinel-2 Multi Spectral Instrument(MSI) launched by the European Space Agency (ESA) offered high spatial resolution optical products, enhanced temporal revisit of five days, and 13 spectral bands in the visible, near infrared and shortwave infrared wavelengths similar to Landsat mission. Landsat satellite imagery has been applied to various previous studies, but Sentinel-2 optical satellite imagery has not been widely used. Currently, for global coverage, Sentinel-2 products are systematically processed and distributed to Level-1C (L1C) products which contain the Top-of-Atmosphere (TOA) reflectance. Furthermore, ESA plans a systematic global production of Level-2A(L2A) product including the atmospheric corrected Bottom-of-Atmosphere (BOA) reflectance considered the aerosol optical thickness and the water vapor content. Therefore, the Sentinel-2 L2A products are expected to enhance the reliability of image quality for overall coverage in the Sentinel-2 mission with enhanced spatial,spectral, and temporal resolution. The purpose of this work is a quantitative comparison Sentinel-2 L2A products and fully simulated image to evaluate the applicability of the Sentinel-2 dataset in cultivated land growing various kinds of crops in Korea. Reference image of Sentinel-2 L2A data was simulated by airborne hyperspectral data acquired from AISA Fenix sensor. The simulation imagery was compared with the reflectance of L1C TOA and that of L2A BOA data. The result of quantitative comparison shows that, for the atmospherically corrected L2A reflectance, the decrease in RMSE and the increase in correlation coefficient were found at the visible band and vegetation indices to be significant.

Construction and Data Analysis of Test-bed by Hyperspectral Airborne Remote Sensing (초분광 항공원격탐사 테스트베드 구축 및 시험자료 획득)

  • Chang, Anjin;Kim, Yongil;Choi, Seokkeun;Han, Dongyeob;Choi, Jaewan;Kim, Yongmin;Han, Youkyung;Park, Honglyun;Wang, Biao;Lim, Heechang
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.2
    • /
    • pp.161-172
    • /
    • 2013
  • The construction of hyperspectral test-bed dataset is essential for the effective performance of hyperspectral image for various applications. In this study, we analyzed the technical points for generating of optimal hyperspectral test-bed site for hyperspectral sensors and the efficiency of hyperspectral test-bed site. In this regard regions we analyzed existing construction techniques for generating test-bed site in domestic and foreign, and designed the test-bed site to acquire images from the airborne hyperspectral sensor. To produce a reference data from the image of constructed test-bed site, this study applied vicarious correction as a pre-processing and analyzed its efficiency. The result presented that it was ideal to use tarp for the vicarious correction, but it is possible to use the materials with constant spectral reflectance or with relatively low variance of spectral reflectance. The test-bed data taken in this study can be employed as the reference of domestic and foreign studies for hyperspectral image processing.

An Analysis of Spectral Pattern for Detecting Pine Wilt Disease Using Ground-Based Hyperspectral Camera (지상용 초분광 카메라를 이용한 소나무재선충병 감염목 분광 특성 분석)

  • Lee, Jung Bin;Kim, Eun Sook;Lee, Seung Ho
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.665-675
    • /
    • 2014
  • In this paper spectral characteristics and spectral patterns of pine wilt disease at different development stage were analyzed in Geoje-do where the disease has already spread. Ground-based hyperspectral imaging containing hundreds of wavelength band is feasible with continuous screening and monitoring of disease symptoms during pathogenesis. The research is based on an hyperspectral imaging of trees from infection phase to witherer phase using a ground based hyperspectral camera within the area of pine wilt disease outbreaks in Geojedo for the analysis of pine wilt disease. Hyperspectral imaging through hundreds of wavelength band is feasible with a ground based hyperspectral camera. In this research, we carried out wavelength band change analysis on trees from infection phase to witherer phase using ground based hyperspectral camera and comparative analysis with major vegetation indices such as Normalized Difference Vegetation Index (NDVI), Red Edge Normalized Difference Vegetation Index (reNDVI), Photochemical Reflectance Index (PRI) and Anthocyanin Reflectance Index 2 (ARI2). As a result, NDVI and reNDVI were analyzed to be effective for infection tree detection. The 688 nm section, in which withered trees and healthy trees reflected the most distinctions, was applied to reNDVI to judge the applicability of the section. According to the analysis result, the vegetation index applied including 688 nm showed the biggest change range by infection progress.

Accuracy evaluation of domestic and foreign land cover spectral libraries using hyperspectral image (초분광 영상을 활용한 국내외 토지피복 분광 라이브러리 정확도 평가)

  • Park, Geun Ryeol;Lee, Geun-Sang;Cho, Gi-Sung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.2
    • /
    • pp.169-184
    • /
    • 2021
  • Recently, land cover spectral libraries have been widely used in studies to classify land cover based on hyperspectral images. Overseas, various institutions have built and provided land cover spectral libraries, but in Korea, the building and provision of land cover spectral libraries is insufficient. Against this background, the purpose of this study is to suggest the possibility of using domestic and foreign spectral libraries in the classification studies of domestic land cover. Band matching is required for comparative analysis of the spectral libraries and land cover classification using the spectral libraries, and in this study, an automation logic to automatically perform this is presented. In addition, the directly constructed domestic land cover spectral library and the existing overseas land cover spectral library were comparatively analyzed. As a result, the directly constructed land cover spectral library had the highest correlation coefficient of 0.974. Finally, for the accuracy evaluation, aerial hyperspectral images of the study area were supervised and classified using the domestic and foreign land cover spectral libraries using the SAM technique. As a result of the accuracy evaluation, it is judged that Soils, Artificial Materials, and Coatings among the classification items of the foreign land cover spectral library can be sufficiently applied to classify the cover in Korea.

Spectral Mixture Analysis Using Hyperspectral Image for Hydrological Land Cover Classification in Urban Area (도시지역의 수문학적 토지피복 분류를 위한 초분광영상의 분광혼합분석)

  • Shin, Jung-Il;Kim, Sun-Hwa;Yoon, Jung-Suk;Kim, Tae-Geun;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.565-574
    • /
    • 2006
  • Satellite images have been used to obtain land cover information that is one of important factors for hydrological analysis over a large area. In urban area, more detailed land cover data are often required for hydrological analysis because of the relatively complex land cover types. The number of land cover classes that can be classified with traditional multispectral data is usually less than the ones required by most hydrological uses. In this study, we present the capabilities of hyperspectral data (Hyperion) for the classification of hydrological land cover types in urban area. To obtain 17 classes of urban land cover defined by the USDA SCS, spectral mixture analysis was applied using eight endmembers representing both impervious and pervious surfaces. Fractional values from the spectral mixture analysis were then reclassified into 17 cover types according to the ratio of impervious and pervious materials. The classification accuracy was then assessed by aerial photo interpretation over 10 sample plots.

Distribution Characteristics Analysis of Pine Wilt Disease Using Time Series Hyperspectral Aerial Imagery (소나무재선충병 발생시기별 피해목 탐지를 위한 시계열 초분광 항공영상의 활용)

  • Kim, So-Ra;Kim, Eun-Sook;Nam, Youngwoo;Choi, Won Il;Kim, Cheol-Min
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.385-394
    • /
    • 2015
  • Pine wilt disease has greatly damaged pine forests not only in East Asia including South Korea and China, but also in European region. The damage caused by pine wood nematode (Bursaphelenchus xylophilus) is expressed in bundles within stands and rapidly spreading, however, present field survey methods have limitations to detecting damaged trees at regional level. This study extracted the damaged trees by pine wilt disease using time series hyperspectral aerial photographs, and analyzed their distribution characteristics. Hyperspectral aerial photographs of 1 meter spatial resolution were obtained in June, September, and October. Damaged trees by pine wilt disease were extracted using Normalized Difference Vegetation Index (NDVI) and Vegetation Index green (VIgreen) of the September photograph. Among extracted damaged trees, dead trees with leaves and without leaves were classified, and the spectral reflectance values from the photographs obtained in June, September, and October were compared to extract new outbreaks in September and October. Based on the time series dispersion of extracted damaged trees, nearest neighbor analysis was conducted to analyze distribution characteristics of the damaged trees within the region where hyperspectral aerial photographs were acquired. As a result, 2,262 damaged trees were extracted in the study area, and 604 dead trees (dead trees in last year) with leaves in relation to the damaged time and 300 and 101 newly damaged trees in September and October were classified. The result of nearest neighbor analysis using the data shows that aggregated distribution was the dominant pattern both previous and current year in the study area. Also, 80% of the damaged trees in current year were found within 60 m of dead trees in previous year.

Discussion on Detection of Sediment Moisture Content at Different Altitudes Employing UAV Hyperspectral Images (무인항공 초분광 영상을 기반으로 한 고도에 따른 퇴적물 함수율 탐지 고찰)

  • Kyoungeun Lee;Jaehyung Yu;Chanhyeok Park;Trung Hieu Pham
    • Economic and Environmental Geology
    • /
    • v.57 no.4
    • /
    • pp.353-362
    • /
    • 2024
  • This study examined the spectral characteristics of sediments according to moisture content using an unmanned aerial vehicle (UAV)-based hyperspectral sensor and evaluated the efficiency of moisture content detection at different flight altitudes. For this purpose, hyperspectral images in the 400-1000nm wavelength range were acquired and analyzed at altitudes of 40m and 80m for sediment samples with various moisture contents. The reflectance of the sediments generally showed a decreasing trend as the moisture content increased. Correlation analysis between moisture content and reflectance showed a strong negative correlation (r < -0.8) across the entire 400-900nm range. The moisture content detection model constructed using the Random Forest technique showed detection accuracies of RMSE 2.6%, R2 0.92 at 40m altitude and RMSE 2.2%, R2 0.95 at 80m altitude, confirming that the difference in accuracy between altitudes was minimal. Variable importance analysis revealed that the 600-700nm band played a crucial role in moisture content detection. This study is expected to be utilized in efficient sediment moisture management and natural disaster prediction in the field of environmental monitoring in the future.