• Title/Summary/Keyword: 항공항법시스템

Search Result 279, Processing Time 0.027 seconds

A Study on Navigation Performance Analysis Technique of Pseudolite Navigation Systems (의사위성 항법시스템의 항법성능 분석기법 연구)

  • Park, Jun-Pyo;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.11
    • /
    • pp.947-957
    • /
    • 2014
  • In this paper, the navigation performance analysis techniques of a pseudolite navigation system are proposed. To validate the techniques, operation and navigation test results using real test data are addressed. The conventional navigation performance analysis methods used for satellite navigation system, such as Galileo and GPS, are analyzed to identify the error factor and to check the criterion of UERE defined in the standard document. And then the method to calculate the UERE through the ranging measurements are studied. By identifying the error factor in pseudolite navigation system based on these methods, the available UERE observation and calculation method applicable to pseudolite navigation are proposed. Simulation results considering various circumstances and the actual flight test results are presented to verify the proposed method.

위성항법시스템 및 보강시스템의 구축 현황

  • Nam, Gi-Uk;Heo, Mun-Beom;Sim, Ju-Yeong
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.5 no.1
    • /
    • pp.65-74
    • /
    • 2007
  • 현재 운용중인 전 세계적인 위성항법시스템(GNSS : Global Navigation Satellite System)은 미국의 GPS(Global Positioning System)와 러시아의 GLONASS(Global Navigation Satellite System)가 있다. 전 세계적으로 주로 사용되는 시스템은 GPS이며, GLONASS는 러시아의 경제사정 악화로 인하여 지속적인 위성발사가 이루어지지 못하고 있다. 추가적으로 추진되고 있는 위성항법시스템은 유럽의 갈릴레오(Galileo), 중국의 북두(Beidou), 일본의 JRANS(Japanese Regional Advanced Navigation System) 그리고 2006년 5월에 구축 프로젝트가 승인된 인도의 IRNSS(Indian Regional Navigation Satellite System)가 있다. 보강시스템의 경우, 미국 FAA(Federal Aviation Administration)는 광역오차보정시스템(WAAS)을 Raytheon사와 개발하였으며, 현재 착륙용 근거리오차보정시스템(LAAS)을 Raytheon사 및 Honeywell사와 함께 정부/산업체 공동개발 사업(GIP; Government Industry Partnership)으로 진행 중에 있다. 유럽은 EGNOS(European Geostationary Navigation Overlay Service)를 사용하고 있으며, 일본의 MSAT(MTSAT Satellite Based Augmentation System)와 인도의 GAGAN(GPS and GEO Augmented Navigation)은 추진 중이다. 이 글에서는 위성항법시스템과 위성항법 보강시스템의 현황을 살펴본다.

  • PDF

How to Operate UAM in Megacities Using Korean Positioning System (한국형 위성항법 시스템(KPS)을 활용한 메가시티 UAM 운용방안)

  • Cho, Sang Keun;Cha, Do wan;Lee, Don Goo;Lee, Dong Min;Sim, Jun Hak;Park, Sang Hyuk
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.259-263
    • /
    • 2022
  • As urbanization progresses in Korea, megacities are being formed around the metropolitan area, the central area, and the southeast area. In addition, it is accelerating the development of urban air mobility (UAM) that can be operated by Mega City as a new growth engine industry in the future. At the same time, in order to become a space powerhouse, Korea plans to establish its own Korean positioning system (KPS) by 2035. Therefore, if urban air mobility and location information services provided by the Korean positioning system are used in combination, urban air mobility can be stably operated in future megacities.

Trends of GNSS Augmentation System and Its Technologies (위성항법 보강시스템 및 기술동향)

  • Lee, S.U.;Hyoung, C.H.;You, M.H.;Sin, C.S.;Ahn, J.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.31 no.3
    • /
    • pp.20-31
    • /
    • 2016
  • 위성항법 보강시스템은 항법위성인 GPS 제공 항법신호를 수신 처리하여 각종 오차 성분을 제거시킴으로써 산출된 위치정확도, 시스템 가용도 및 제공신호에 대한 무결성 등이 향상됨에 따라 항공분야, 해양분야 및 차량내비 등 육상분야에서 요구하는 위치정확도뿐만 아니라 보강 및 무결정정보 등을 특정 성능 요구를 만족시킬 수 있도록 제공하는 시스템이다. GPS 신호에 대한 오차를 보강한 메시지를 활용하는 매체를 무엇을 활용하는지에 따라 구분할 수 있는데 위성을 이용하면 위성기반 보강시스템(Satellite Based Augmentation System: SBAS), 지상망을 이용하면 지상기반 보강시스템(Ground Based Augmentation System: GBAS), 비행기를 이용하면 항공기반보강시스템(Aircraft-Based Augmentation System: ABAS)으로 일컫는다. 본고에서는 위성항법 보강시스템의 현황과 그 관련 기술에 대하여 기술하고 한다.

  • PDF

Technology Trends of Aeronautical Radio Navigation System and Raising Plan for Relevant Domestic Businesses (국내외 항공용 전파항법시스템 기술동향 및 국내 관련 산업 육성 방안)

  • Shin, Jae Chun;Lee, Eunsung;Leem, Choon Seong
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.561-571
    • /
    • 2017
  • Radio navigation systems are already used as important national infrastructures in various fields such as air traffic, land transportation, geodetic survey, broadcasting communication and national defense, and are used in various industries. Since these systems are fusion of various technologies, it takes much time and cost in the development stage. In the early stages of development of the system, developed countries are establishing a national mid-term plan that meets international compatibility and standards. Korea did not develop the system due to the lack of national mid- and long-term plan, and it is not contributing effectively to industries. This paper analyzes the technical principles and technology trend of radio navigation system in the aviation sector to establish mid - and long - term plan. Based on the analyzed technology trends, the future prospect of technological development of the domestic navigation system and the development of related industries will be presented.

The Development of Aerial Navigation Map and Aerial Photographic Guidance System (항공항법지도와 항공사진 촬영안내 시스템의 개발)

  • Hwang, Jin-Sang;Lee, Jae-One;Yoon, Jong-Seong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.3
    • /
    • pp.70-78
    • /
    • 2004
  • The aerial photographic mission is a difficult work because aircraft must be flown along the specified flight lines, not marked on the ground. This study has been carried out for the development of aerial photographic guidance system, which enables us to make aerial photographic task easier. Such a flight guidance system is able to display a variety of map informations in a quick and efficient way in order to guide pilot. For this purpose, we first developed the nationwide aerial navigation map database that provides the topographic map information used for topographic interpretation and aeronautical chart information used for the flight security. Next, we developed the aerial photographic guidance system which uses the aerial navigation map as base map. It is concluded that the developed system can display the various map informations quickly and do any other photographing guidance tasks well in fast moving airplane.

  • PDF

스트랩다운 관성항법시스템 성능평가 시험

  • Lee, Sang-Jong;Yoo, Chang-Sun;Sim, Yo-Han;Kim, Jong-Chul
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.28-41
    • /
    • 2002
  • The purpose of this paper is to show and define the performance, the system mechanization and the algorithm of the Strapdown Inertial Navigation System(SDINS). First, navigation equations are derived in the Earth Fixed mechanization and this mechanization apply to the two kinds of inertial measurement units which consist of same fiber optic gyros and different accelerometers(SDINS-1 and SDINS-2). Those two accelerometers have the different bias. To evaluate its performance, two kinds of tests have been performed - static motionless test, and rectangle-route moving test. The results of the moving test are compared with the results of Differential GPS which has an accuracy with ±2.0mm. and are presented in this paper.

  • PDF

Test and Evaluation for GNSS based Lane Level Precise Positioning User System (위성항법 기반 차로구분 정밀위치결정 사용자 시스템 시험 평가)

  • Lee, Jung-Hoon;Lee, Sangwoo;Ahn, Jongsun;Im, Sunghyuck;Choi, Yunseong;Jang, Youngsu;Lee, Dongchul;Heo, Moon-Beom
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.566-576
    • /
    • 2018
  • The C-ITS requires the lane level positioning of the vehicle in the land transportation environment, and it is most effective to utilize the GNSS. In the precision positioning system based on satellite navigation, the evaluation of dynamic environment of lane level positioning performance should be accompanied and the evaluation system configuration should be preceded. In this paper, we selected performance indicators, assessment equipment, and reliability of reference equipment for evaluation of precision positioning user systems based on the GNSS. The performance evaluation system described above is applied to a real system, and the performance evaluation tool developed for the evaluation system is described. The numerical performance evaluation was carried out based on the data collected by carrying out the actual testbed driving. The performance evaluation by the actual driving trajectory and driving image comparison was performed to derive and analyse the evaluation results of the vehicle lane level positioning user system.

Development of Navigation Computer for Small Satellites Using Integrated GPS/INS (소형위성용 GPS/INS 통합 항법 컴퓨터 개발)

  • Choi, Young-Hoon;Lee, Byung-Hoon;Chnag, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.393-398
    • /
    • 2008
  • This paper suggests a GPS/INS navigation computer architecture that can be applied to small satellites. In order to implement a GPS/INS navigation system on a small satellite, the extreme environment in space such as radiation, micro-gravity, vacuum, etc. must be considered. In addition, a real-time processing ability is required for the GPS/INS navigation system since the formation flying of multiple small satellites is the ultimate goal. The developed navigation electronics utilizes a PowerPC-type MPC860T that has space environment heritage, and a pair of Atmega128s that has been implemented in KAUSAT-2 and has completed the space environment verification tests. The navigation algorithm is designed to work in VxWorks environment, ported in MPC860T.

Time Delay Error Analysis and Compensation Method of Integrated Navigation System for Aircraft Store (항공장착물의 전달정렬을 위한 통합항법장치 시간 지연 오차 분석 및 보상 기법)

  • Seo, Byung-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.7
    • /
    • pp.592-601
    • /
    • 2018
  • The GPS/INS integrated navigation system, which is one of the electronic equipments mounted on military aircraft store, can not directly receive GPS signals by the aircraft wing before the drop, so GPS navigation data is received from the aircraft and used for filter integration, afterwards, the integrated navigation is performed using the GPS information directly received through the antenna. In this case, it is possible to operate the mount in old aircraft without any modification of the aircraft when GPS data is transmitted using wireless. However, the delay occurs while the aircraft navigation data is transmitted to the integrated navigation filter of the aircraft store via wireless, which affects the time synchronization of the GPS measurement and the INS information, affecting the integrated navigation performance. In this paper, an algorithm to analyze and compensate the effect of generation and transmission delay that can occur when implementing GPS/INS integrated navigation system of aircraft store that receives GPS data via wireless.