• Title/Summary/Keyword: 항공용 기어박스

Search Result 3, Processing Time 0.015 seconds

Stress & Life Evaluation of Cylindrical Roller Bearing for Aircraft Gearbox according to Roller Profile Shape (롤러 프로파일에 따른 항공용 기어박스 원통 롤러 베어링의 응력 및 수명 평가)

  • Jae-Hyun, Kim;Hyun-Woo, Han;Dongu, Im;Jung-Ho, Park;Su-Chul, Kim;Young-Jun, Park
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.35-44
    • /
    • 2022
  • This study aims to evaluate the stress and life of cylindrical roller bearings used in aircraft gearboxes, and to select a roller profile that minimises the contact stress between bearing rollers and raceways. The mounting clearance of four points contact ball bearing was determined, so that cylindrical roller bearings support all radial loads, and the bearing mounting position was determined to maximise the bearing lives. In addition, the static safety factor and dynamic life of bearing were predicted according to ISO 76 & ISO/TS 16281 using the load spectrum determined based on the operating load cases of aircraft gearboxes. Furthermore, the optimal roller profile was selected by analysing the contact stress according to the roller profile shape, and the safety of each roller was evaluated. The results stated that the required safety factor and lifetime were satisfied, and Johns Gohar roller profile was optimal.

Vibration Analysis of a Turbo Compressor Test Rig (터보 압축기 성능시험을 위한 리그 진동 분석)

  • Park, Tae-Choon;Kang, Young-Seok;Yang, Soo-Seok;Lee, Jin-Kun
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.98-107
    • /
    • 2009
  • Vibration analysis of a turbo compressor test rig was carried out in order to investigate the vibrational characteristics of the compressor facility in KARI before conducting the compressor performance test of 5MW-class gas turbine engine for generation. The overall compressor test facility consists largely of inlet and exit ducts, a test section and a driving part. Vibration was measured with accelerometers at the test section and the driving part, especially at a main housing, a collector, a bearing carrier, a torquemeter, a gearbox, and an electric motor. Gap sensors are also installed to measure the rotordynamic characteristics of compressor shaft.

  • PDF

Numerical Study on Surface Air-Oil Heat Exchanger for Aero Gas-Turbine Engine Using One-Dimensional Flow and Thermal Network Model (항공기 가스터빈용 오일쿨러 해석을 위한 1 차원 열유동 네트워크 수치적 모델 개발 및 연구)

  • Kim, Young Jin;Kim, Minsung;Ha, Man Yeong;Min, June Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.11
    • /
    • pp.915-924
    • /
    • 2014
  • In an aero gas-turbine engine, a surface air-oil heat exchanger (SAOHE) is used to cool the oil system for the gearboxes and electric generators. The SAOHE is installed inside the fan casing of the engine in order to dissipate the heat from the oil system into the bypass duct stream. The purpose of this study was to develop an effective numerical method for designing an SAOHE for an aero gas-turbine engine. A two-dimensional model using a porous medium was developed to evaluate the aero-thermal performance of the fins of the heat exchanger, and a one-dimensional flow and thermal network program was developed to save time and cost in the evaluation of the heat exchanger performance. Using this network program, the pressure drop and heat transfer performance of the heat exchanger were predicted, and the results were compared with two-dimensional computational fluid dynamics results and experiment data for validation.