• Title/Summary/Keyword: 핫스탬핑

Search Result 40, Processing Time 0.024 seconds

Effect of Hot-stamping on Microstructures and Tensile Properties of Al-Si Coated Boron Steel Welds with Laser Source (Al-Si 도금된 보론강 레이저 소스에 따른 레이저 용접부의 미세조직과 기계적 성질에 미치는 핫스탬핑 처리의 영향)

  • Oh, Myeong-Hwan;Kong, Jong-Pan;Kwon, Min-Suck;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.96-106
    • /
    • 2013
  • In this study, the effect of laser source($CO_2$ and Nd:YAG) on the microstructure and tensile properties of laser welded Al-Si coated boron steel(1.2mmt) was investigated with before and after hot-stamping. In case of as welds condition, fracture occurred in base metal unrelated to the laser source. It could be explained that tensile strength of fusion zone composed of martensite and bainite is higher than that of base metal that contains a lot of ferrite despite dilution of Al and Si from coating layer to fusion zone. In case of hot-stamping condition, the fracture occurred in fusion zone irrelevant to laser source and the tensile strength was lower than hot stamped base metal. In the $CO_2$ laser welds, $Fe_3$(Al,Si) formed near the bond line was transformed into ferrite during hot-stamping. Therefore tensile strength of bond line is lower than that of base metal and center of fusion zone and the fracture occurred in the bond line. On the other hand, in the Nd:YAG laser welds, the higher concentration of Al formed the ferrite in the fusion zone during hot-stamping treatment. Also, the thickness of centerline was thinner than that of base metal. Therefore, it is considered that fracture occurred in centerline of fusion zone due to effect of concentration stress, and it leaded to a lower tensile strength and elongation.

Effect of Hot-stamping Heat Treatment on the Microstructure of Al-Segregated Zone in TWB Laser Joints of Al-Si-coated Boron Steel and Zn-coated DP Steel (Al-Si 도금된 보론강과 Zn 도금된 DP강 TWB 레이저 용접부내의 Al-편석부 미세조직에 미치는 핫스탬핑 열처리의 영향)

  • Jung, Byung Hun;Kong, Jong Pan;Kang, Chung Yun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.6
    • /
    • pp.455-462
    • /
    • 2012
  • Al-Si coated boron steel and Zn coated DP steel plates were laser-welded to manufacture a Tailor Welded Blank (TWB) for a car body frame. Hot-stamping heat treatment ($900^{\circ}C$, 5 min) was applied to the TWB weld, and the microstructural change and transformation mechanism were investigated in the Al-rich area near the bond line of the Al-Si coated steel side. There was Al-rich area with a single phase, $Fe_3(Al,Si)$, which was transformed to ${\alpha}-Fe$ (Ferrite) after the heat treatment. It could be explained that the $Fe_3(Al,Si)$ phase was transformed to ${\alpha}-Fe$ during heat treatment at $900^{\circ}C$ for 5 min and the resultant ${\alpha}-Fe$ phase was not transformed by rapid cooling. Before the heat treatment, the microstructures around the $Fe_3(Al,Si)$ phase consisted of martensite, bainite and ${\alpha}-Fe$ while they were transformed to martensite and ${\delta}-Fe$ after the heat treatment. Due to the heat treatment, Al was diffused to the $Fe_3(Al,Si)$ and this resulted in an increase of Al content to 0.7 wt% around the Al-rich area. If the weld was held at $900^{\circ}C$ for 5 min it was transformed to a mixture of austenite (${\gamma}$) and ${\delta}-Fe$, and only ${\gamma}$ was transformed to the martensite by water cooling while the ${\delta}-Fe$ was remained unchanged.

Study on the Shear Characteristics by using the Hot Mechanical Piercing during the Hot Stamping Process (열간 기계적 피어싱을 이용한 핫스탬핑 전단특성 연구)

  • K. J. Park;J. M. Park;J. Y. Kong;J. Y. Kim;S. C. Yoon;J. S. Hyun;Y. D. Jung
    • Transactions of Materials Processing
    • /
    • v.32 no.2
    • /
    • pp.81-86
    • /
    • 2023
  • The hot stamping process is widely used for high strength of vehicle parts, with heating 900 ℃ or higher in a furnace and in-die quenching to achieve strength above 1.5 GPa of the quenchable boron alloyed steel 22MnB5. First of all, the hot stamping process consisted of heating, forming, quenching and trimming. In the trimming process case, the laser method has been conventionally adopted. For laser trimming process, it has the problems pertaining to low productivity and high cost while the hot stamping process, accordingly the trimming process need to investigate the research for alternative method. In order to overcome these issues, many research groups have studied the mechanical trim solution on the hot stamped parts at high temperature. In this study, the mechanical piercing was performed during the hot stamping process at the high temperature for overcome the disadvantages of laser cutting. Also, the process parameters such as piercing time after die closing, clearances of between die and punch were controlled for obtaining the reasonable shear characteristics.

The Application of Direct Water Quenching Process in Hot Stamping of Boron Steels (보론강 판재 핫스탬핑시 직수분사냉각 공정의 적용성)

  • Park, Hyeon Tae;Kwon, Eui Pyo;Im, Ik-Tae
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.818-824
    • /
    • 2019
  • In this study, the direct water quenching technique is applied to validate the applicability of direct water quenching as a cooling method in the hot stamping process of 3.2 mm thick boron steel sheet. Cooling performance of conventional die quenching and direct water quenching is compared. Higher cooling rate is obtained by hot stamping with direct water quenching compared to die quenching. As the flow rate of cooling water increases, the cooling rate increases, and a high cooling rate of 71 ℃/s is achieved under flow rate conditions of 0.8 L/min. Through direct water quenching, the cooling time required for sufficient cooling of the sheet is reduced. Full martensitic microstructure is obtained under flow rate condition of 0.8 L/min. Hardness increases with increasing flow rate. From these results, it is verified that the direct water quenching is applicable to the hot stamping of thick boron steel sheet.

Effect of Hot-stamping Heat Treatment on Microstructure and Hardness in TWB Laser Joints of Al-Si-coated Boron Steel and Zn-coated DP Steel (Al-Si 도금된 보론강과 Zn 도금된 DP강의 TWB 레이저 용접부 미세조직과 경도에 미치는 핫 스탬핑 열처리의 영향)

  • Jung, Byung-Hun;Kong, Jong-Pan;Kang, Chung-Yun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.3
    • /
    • pp.224-232
    • /
    • 2012
  • In this study, the effect of hot-stamping heat treatment on the microstructure and hardness of TWB(Tailor Welded Blank) laser joints in Al-Si-coated boron steel and Zn-coated DP(Dual Phase)590 steel was investigated. In the TWB joints without heat treatment, hardness profiles showed local hardness deviation near the fusion zone. However, there was no hardness deviation in the heat treated specimen and its hardness was higher than that of the one without the heat treatment, due to a fully martensite microstructure. In the TWB joints of both the boron and DP steels, the maximum hardnesses were observed at the HAZ(Heat Affected Zone) near the base metal, and the hardness decreased gradually to the base metal. In the heat treated joints, the hardnesses of the HAZ and the base metal of the boron steel side were similar to the maximum hardness of the weld, while those of the HAZ and the base metal of the DP steel side were higher than the maximum hardness.

Microstructure and Mechanical Properties of Hot-Stamped 3.2t Boron Steels according to Water Flow Rate in Direct Water Quenching Process (3.2t 보론강 판재 직수냉각 핫스탬핑시 냉각수 유량에 따른 미세조직 및 기계적 특성)

  • Park, Hyeon Tae;Kwon, Eui Pyo;Im, Ik Tae
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.693-700
    • /
    • 2020
  • Direct water quenching technique can be used in hot stamping process to obtain higher cooling rate compared to that of the normal die cooling method. In the direct water quenching process, setting proper water flow rate in consideration of material thickness and the size of the area directly cooled in the component is important to ensure uniform microstructure and mechanical properties. In this study, to derive proper water flow rate conditions that can achieve uniform microstructure and mechanical properties, microstructure and hardness distribution in various water flow rate conditions are measured for 3.2 mm thick boron steel sheet. Hardness distribution is uniform under the flow condition of 1.5 L/min or higher. However, due to the lower cooling rate in that area, the lower flow conditions result in a drastic decrease in hardness in some areas in the hot-stamped part, resulting in low martensite fraction. From these results, it is found that the selection of proper water flow rate is an important factor in hot stamping with direct water quenching process to ensure uniform mechanical properties.

Oxide Layer Analysis of Uncoated Boron Steel Sheet for Hot Stamping According to the Atmosphere Oxygen Content (비도금 핫스탬핑용 보론강판의 분위기 산소량에 따른 산화층 분석)

  • J. H. Lee;T. H. Choi;J. H. Song;G. H. Bae
    • Transactions of Materials Processing
    • /
    • v.32 no.3
    • /
    • pp.160-165
    • /
    • 2023
  • As the supply of eco-friendly vehicles increases, the application rate of hot stamping components is rising to reduce vehicle weight and improve safety. Although Al-Si coated steel sheets are commonly used in hot stamping processes, their manufacturing costs are elevated due to process patents and royalties. Various hot stamping studies have been conducted to reduce these production costs. In this study, we derived a process control method for suppressing the oxide layer of hot stamping parts using uncoated boron steel sheets. Firstly, hat-shaped parts were hot stamped under atmospheric conditions to analyze the tendency of oxide layer formation by location. Then, the Gleeble system was used to observe oxide layer formation based on oxygen content under various atmospheric conditions. Finally, the oxide layer thickness was quantitatively measured using SEM images.

A Study on Design Automation of Cooling Channels in Hot Form Press Die Based on CATIA CAD System (CATIA CAD 시스템 기반 핫폼금형의 냉각수로 설계 자동화에 관한 연구)

  • Kim, Gang-Yeon;Park, Si-Hwan;Kim, Sang-Kwon;Park, Doo-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.147-154
    • /
    • 2018
  • This paper focuses on the development of a support system that can rapidly generate the design data of a hot-form die with cooling channels, commonly known as hot stamping technology. We propose a new process for designing hot-form dies based on our (automated) system, whose main features are derived from the analysis of the design requirements and design process in the current industry. Our design support system consists of two modules, which allow for the generation of a 3D geometry model and its 2D drawings. The module for 3D modeling automation is implemented as a type of CATIA template model based on CATIA V5 Knowledgeware. This module automatically creates a 3D model of a hot-form die, including the cooling channels, that depends on the shape of the forming surface and the number of STEELs (subsets of die product) and cooling channels. It also allows for both the editing of the positions and orientations of the cooling channels and testing for the purpose of satisfying the constraints on the distance between the forming surface and cooling channels. Another module for the auto-generation of the 2D drawings is being developed as a plug-in using CAA (CATIA SDK) and Visual C++. Our system was evaluated using the S/W test based on a user defined scenario. As a result, it was shown that it can generate a 3D model of a hot form die and its 2D drawings with hole tables about 29 times faster than the conventional manual method without any design errors.

Effect of Chemical Composition of Nut Material on the Fracture Behavior in Nut Projection Welding of Hot-Stamped Steel Sheet (핫스탬핑강의 너트 프로젝션 용접시 너트 재질이 용접부 파단모드 변화에 미치는 영향)

  • Lim, Sung-Sang;Kim, Young-Tae;Chun, Eun-Joon;Nam, Ki-Sung;Park, Young-Wan;Kim, Jae-Wan;Lee, Sun-Young;Choi, Il-dong;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.1-10
    • /
    • 2016
  • The use of materials for modern lightweight auto-bodies is becoming more complex than hitherto assemblies. The high strength materials nowadays frequently used for more specific fields such as the front and rear sub frames, seat belts and seats are mounted to the assembled body structure using bolt joints. It is desirable to use nuts attached to the assembled sheets by projection welding to decrease the number of loose parts which improves the quality. In this study, nut projection welding was carried out between a nut of both boron steel and carbon steel and ultra-high strength hot-stamped steel sheets. Then, the joints were characterized by optical and scanning electron microscope. The mechanical properties of the joints were evaluated by microhardness measurements and pullout tests. An indigenously designed sample fixture set-up was used for the pull-out tests to induce a tensile load in the weld. The fractography analysis revealed the dominant interfacial fracture between boron steel nut weld which is related to the shrinkage cavity and small size fusion zone. A non-interfacial fracture was observed in carbon steel nut weld, the lower hardness of HAZ caused the initiation of failure and allowed the pull-out failure which have higher in tensile strengths and superior weldability. Hence, the fracture load and failure mode characteristics can be considered as an indication of the weldability of materials in nut projection welding.

Effects of Tempering Condition on the Microstructure and Mechanical Properties of 30MnB5 Hot-Stamping steel (핫스탬핑용 30MnB5강의 템퍼링 조건에 따른 미세조직 및 기계적 물성 연구)

  • Jeong, Junyeong;Park, Sang-Cheon;Shin, Ga-Young;Lee, Chang Wook;Kim, Tae-Jeong;Choi, Min-Su
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.11
    • /
    • pp.787-795
    • /
    • 2018
  • The effects of tempering condition on the microstructure and mechanical properties of 30MnB5 hot stamping steel were investigated in this study. Before the tempering, hot-stamped 30MnB5 steel was composed of only ${\alpha}^{\prime}$-martensite microstructure without precipitates. After the tempering at $180^{\circ}C$ for 120 min, nano-sized ${\varepsilon}$-carbides were precipitated in the ${\alpha}^{\prime}$-martensite laths. After tempering at $250^{\circ}C$ for 60 min, cementite was precipitated along the ${\alpha}^{\prime}$-martensite lath boundaries. The cementite was also observed in the specimens tempered at $350^{\circ}C$ for 30 min and $450^{\circ}C$ for 6 min, respectively. The globular ${\alpha}$-ferrite appeared at $350^{\circ}C-30min$ tempering, and the volume fraction of ${\alpha}$-ferrite increased when the tempering temperature was increased. The yield strength increased after tempering, and it reached a peak with the tempering condition of $180^{\circ}C-120min$, due to the nano-sized precipitates in the ${\alpha}^{\prime}$-martensite lath. After the tempering, the steel's ultimate tensile strength (UTS) was decreased due to the reduction in dislocation density and C segregation to lath boundaries. The highest elongation was observed at the $180^{\circ}C-120min$ tempering condition, due to the reduction of residual stress, and the lack of precipitates along the lath boundaries. The $180^{\circ}C-120min$ tempering condition was considered to have outstanding crash performance, according to toughness and anti-intrusion calculation results. In drop tower crash tests, the 30MnB5 door impact beam tempered at $180^{\circ}C$ for 120 min showed better crash performance compared to a 22MnB5 door impact beam.