• Title/Summary/Keyword: 합성 지하벽

Search Result 8, Processing Time 0.02 seconds

Nonlinear Analysis of Composite Basement Wall Using Contact Element (접촉면 요소를 사용한 합성 지하벽의 비선형 해석)

  • Seo, Soo Yeon;Lee, Chenggao
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.176-184
    • /
    • 2007
  • The objective of this paper is to suggest a nonlinear analysis process to predict the structural behavior and strength of composite basement wall member combined with H-Pile. Therefore, the structural behavior of composite basement wall is studied and the special nonlinear characteristics of each elements such as H-Pile, concrete wall, and shear connectors are idealized using ATENA program. Finally, the result is compared with previous test result. Research result shows that there is a good co-relation between analysis and test results even if analysis result has little bit higher initial stiffness than test result. It can be concluded that the nonlinear behavior of composite basement wall is suitably predicted by using the contact element model in ATENA program as shear connector element.

Shear Capacity of Composite Basement Walls (합성 지하벽의 전단성능)

  • 김성만;이성호;서수연;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.321-330
    • /
    • 2002
  • This paper presents the experimental results of composite basement wall in which H-pile and reinforced concrete wall are combined using shear connector Twelve specimens are tested to evaluate the shear capacity of the wall. Main variables in the test are composite ratio, distribution of shear connector, thickness of wall, shear-span ratio, and shear reinforcement. Test results indicate that the shear capacity of test specimens varies with the foregoing variables except the composite ratio. The results are compared with strengths predicted using the equations of ACI 318-99, Zsutty, and Bazant. Based on this investigation, a method for predicting the shear strength of composite basement walls is proposed.

The Effect of Composite Ratio and Wall Thickness on the Shear Behavior of Composite Basement Wall (합성율과 벽체두께가 합성지하벽의 전단거동에 미치는 영향)

  • Seo, Soo-Yeon;Kim, Seong-Soo;Yoon, Yong-Dae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.93-101
    • /
    • 2010
  • When doing underground excavation works for the purpose of constructing large underground structures for a building in the limited space in downtown area, the stability of the adjacent ground must be top priority, and to accomplish this, it is essential to review the retaining wall construction carefully. H-Pile, which has been mainly used as a stress-carrying material in temporary earth-retaining structures, is most likely to be abandoned after completion of the works for the basement exterior wall in relation to contiguous bored piles, so it will result in a waste of material. To improve this situation, Basement Composite Wall where H-Pile and basement wall are compounded, has been developed. This wall is being used most frequently in many local construction sites. In this study, five specimens are made in order to evaluate the shear resistance of the basement composite wall and tested. Test parameter is the composition ratio and wall thickness according to shear connectors. Test result shows that the shear strength is improved when the composite ratio is increased but the magnitude is not much. A formula, which considers the contribution of concrete, web of H-pile as well as flange' effect in calculation of shear strength of composite basement wall, is suggested and used to calculation of the strength of specimens. It is found that there is a good co-relation between test result and the calculated one by the formula.

Structural Behavior of Composite Basement Wall According to Shear Span-to-Depth Ratio and FE Analysis Considering the Condition of Contact Surface (전단경간비에 따른 합성지하벽의 거동과 접촉면의 조건을 고려한 유한요소 해석)

  • Seo, Soo Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.118-126
    • /
    • 2011
  • The objective of this paper is to study the structural behavior of Composite Basement Wall (CBW) according to shear span-to-depth ratio through an experiment and predict the nonlinear behavior of CBW by using ADINA program widely has been being used for FE analysis. Especially, this study focuses on the part of CBW in which the Reinforced Concrete (RC) is under compression stress; At the region of CBW around each floor, RC part stresses by compressive force when lateral press by soil acts on the wall. The contact condition between RC wall and steel (H-Pile) including stud connector is main factor in the analysis since it governs overall structural behavior. In order to understand the structural behavior of CBW whose RC part is under compressive stress, an experimental work and finite element analysis were performed. Main parameter in the test is shear span-to-depth ratio. For simplicity in analysis, reinforcements were not modeled as a seperated element but idealized as smeared to concrete. All elements were modeled to have bi-linear relation of material properties. Three type of contact conditions such as All Generate Option (AGO), Same Element Group Option with Tie(SEGO-T) and Same Element Group Option with Not tie(SEGO-NT) were considered in the analysis. For each analysis, the stress flow and concentration were reviewed and analysis result was compared to test one. From the test result, CBW represented ductile behavior by contribution of steel member even if it had short shear span-to-depth ration which is close to "1". The global composite behavior of CBW whose concrete wall was under compressive stress could be predicted by using contact element in ADINA program. Especially, the modeling by using AGO and SEGO-T showed more close relation on comparing with test result.

Analysis and Design on the Flexural Behavior of Composite Basement Wall Through Nonlinear Sectional Analysis (비선형 단면해석을 통한 합성지하벽의 휨 거동 분석 및 설계)

  • Seo, Soo-yeon;Kim, Hyeon-woo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.2
    • /
    • pp.145-153
    • /
    • 2020
  • The purpose of this study is to investigate the effects of composition of underground structural wall and H-pile in soil cement. The results of previous experimental studies are re-analyzed and the nonlinear cross-sectional analyses of composite basement walls are performed to verify their nonlinear flexural behavior. Based on the study, it is explained how the gap deformation between H-Pile and RC wall should be considered in the design of flexure of composite underground walls. The nonlinear cross-sectional analysis shows that the load-displacement curves of composite basement wall specimens exhibiting flexural behavior exist between the results of the analysis of the complete and non-composite cases. When predicting the behavior of the composite basement wall by nonlinear cross-sectional analysis, the flexural behavior of the composite basement wall could be suitably predicted by considering the reduction of the composite ratio due to tensile stress acting on shear connectors.

Experimental Study on the Shear Capacity of Composite Basement Walls (합성 지하벽의 전단내력 산정에 관한 실험적 연구)

  • 김성만;이성호;서수연;이리형;홍원기;장재호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.379-384
    • /
    • 2001
  • This paper presents the experimental result of composite basement wall in which H-pile and reinforced concrete wall are combined using shear connector. Twelve specimens are tested to evaluate the shear capacity of the wall. Main variables in the test are composite ratio, arrangement of shear connector, thickness of wall, shear span ratio, and shear reinforcement. Test results indicate that the shear capacity of test specimens varies with the foregoing variables except the composite ratio. The results are compared with strengths predicted using the equations of ACI 318-99, Zsutty, and Bazant. Based on this investigation, a method for predicting the shear strength of composite basement walls is proposed.

  • PDF

A Study of Earth Pressure and Deformation acting on the Flexible Wall in Soft Soil (연약지반 흙막이벽에 작용하는 토압 및 변위에 관한 연구)

  • Park, Yeong-Mog;Chung, Youn-In
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.215-222
    • /
    • 2003
  • Recently the deep and large excavations are performed near the existing buildings in urban areas for the practical use of underground space. The earth pressure due to the excavation are varied according to the conditions of ground, the depth of excavation, the construction methods, and the method of supporting the earth pressure etc.. In this study, not only the behavior of axial load and distribution of earth pressure on the flexible wall according to stage excavation depth but also magnitude and distribution of lateral deformation, and the equivalent earth pressure from strut axial loads were analyzed by the results measured from instruments such as, load cells, strain gauges, and in-situ inclinometer, on the field of subway construction. According to the results of this study in the case of stage excavation the earth pressure of soft clayey soil is compounded with Terzaghi-Peck and Tschebotarioff.