• 제목/요약/키워드: 합성 이미지

검색결과 554건 처리시간 0.03초

객체 탐지 알고리즘 기반 이미지 검색 시스템 (Image Search System Based on Object Detection Algorithm)

  • 안지현;박승민
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.685-687
    • /
    • 2023
  • 최근에 이르러 인공신경망의 발전은 CNN(Convolutional Neural Network) 알고리즘을 활용한 이미지 분석 및 검색 시스템에 비약적인 기여를 하고 있다. 이는 이미지를 입력으로 받아 유사한 이미지를 찾아내는 기능을 향상시키는 연구를 촉진시켰다. 이와 같은 기술의 실용화는 다양한 분야를 포괄하며, 대표적으로 쇼핑몰의 상품검색, 검색 엔진 등에 응용되어 사용자의 편의를 제고하고 있다. 이에 따라 상품명에 대한 정보가 없는 상황에서도 단순한 이미지 정보를 통해 원하는 상품을 검색하는 것이 가능해졌다. 그러나, 실제 세계의 이미지에는 다양한 객체들이 복잡하게 혼재하고 있어 CNN 알고리즘 단독으로는 이미지 내부의 객체를 정확히 분석하고, 그 객체가 포함된 다른 이미지들을 효과적으로 검색하는데 한계가 있음이 인지되고 있다. 본 연구는 이러한 문제점을 개선하기 위해 객체 탐지 알고리즘을 적용하는 방안을 모색하였다. 본 논문에서는 객체 탐지 알고리즘을 통해 이미지 내부의 객체를 분석하고, 그에 따른 유사 객체를 포함하는 이미지를 찾아내는 전략을 제시한다. 이를 통해 이미지 분석 및 검색의 정확성을 더욱 향상시킬 수 있는 가능성을 제안한다.

  • PDF

이미지 컬러채널을 이용한 워게임 합성환경 객체 배치방법 (An Object Placement Method for War Game Synthetic Environment Using Color Channels of Image)

  • 하동원;이태억
    • 한국게임학회 논문지
    • /
    • 제13권2호
    • /
    • pp.111-118
    • /
    • 2013
  • 미군은 이기종간 워게임 환경통합과 최단시간 모의환경 생성을 위해 SE-CORE와 공통가상 환경을 개발하고 발전시키고 있다. 한국도 실정에 맞는 SEDRIS 연구 등을 진행하고 있지만 여전히 풀어야 할 문제가 많다. 이 연구는 합성자연환경에서 수작업으로 행해지는 객체 배치 과정을 이미지 채널 정보를 통해 반자동화 하는 방법을 제안하고 있으며, 이는 합성환경 생성을 빠르게 하고 이기종간 자료공유를 수월하게 할 수 있게 한다. 향후 추가적인 연구가 진행되면 다양한 정보수집 장치로부터 입력된 자료들을 합성전장환경에 적용할 수 있는 자동화 기술 개발도 가능할 것으로 보인다.

모바일 환경에서 감성을 기반으로 한 영상 합성 기법 연구 및 개발 (Research and Development of Image Synthesis Model Based on Emotion for the Mobile Environment)

  • 심승민;이지연;윤용익
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권11호
    • /
    • pp.51-58
    • /
    • 2013
  • 최근 스마트폰 카메라의 성능은 디지털 카메라 못지않게 발전하고 있다. 이에 따라 점점 더 많은 사람들이 사진촬영을 하게 되고, 사진 관련 어플리케이션에 대한 관심은 꾸준히 증가하고 있다. 하지만 현재 나와 있는 사진 합성 프로그램은 여러 장의 사진을 배치하는 방법, 기존 이미지를 플러그인 이미지에 포개는 방법 등으로 단순한 합성 프로그램에 머물러 있는 실정이다. 본 논문에서 제안하는 모델은 얼굴 표정에서 추출한 감정을 기반으로 이에 맞는 배경을 합성하고 효과 필터를 적용하여 기존 사진 합성 프로그램보다 다양한 분야에서 활용할 수 있는 확장성을 가진 기법을 제시하였다.

드론 식별 시스템을 위한 합성곱 신경망 기반 이미지 분류 모델 성능 비교 (Performance Comparison of CNN-Based Image Classification Models for Drone Identification System)

  • 김영완;조대균;박건우
    • 문화기술의 융합
    • /
    • 제10권4호
    • /
    • pp.639-644
    • /
    • 2024
  • 최근 전장에서의 드론 활용이 정찰뿐만 아니라 화력 지원까지 확장됨에 따라, 드론을 조기에 자동으로 식별하는 기술의 중요성이 더욱 증가하고 있다. 본 연구에서는 드론과 크기 및 외형이 유사한 다른 공중 표적들인 새와 풍선을 구분할 수 있는 효과적인 이미지 분류 모델을 확인하기 위해, 인터넷에서 수집한 3,600장의 이미지 데이터셋을 사용하고, 세 가지 사전 학습된 합성곱 신경망 모델(VGG16, ResNet50, InceptionV3)의 특징 추출기능과 추가 분류기를 결합한 전이 학습 접근 방식을 채택하였다. 즉, 가장 우수한 모델을 확인하기 위해 세 가지 사전 학습된 모델(VGG16, ResNet50, InceptionV3)의 성능을 비교 분석하였으며, 실험 결과 InceptionV3 모델이 99.66%의 최고 정확도를 나타냄을 확인하였다. 본 연구는 기존의 합성곱 신경망 모델과 전이 학습을 활용하여 드론을 식별하는 새로운 시도로써, 드론 식별 기술의 발전에 크게 기여 할 것으로 기대된다.

탄소를 도입한 산화타이타늄의 합성과 촉매 활성 연구

  • 김영용;권기영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.163.2-163.2
    • /
    • 2016
  • 타이타늄과 탄소의 비율이 서로 다른 조건에서, 탄소가 도입된 산화타이타늄 (TiO2)을 수열합성법을 이용하여 합성하였다. TEM 이미지를 통하여 일정한 형태의 산화타이타늄이 합성된 것과, XRD 패턴 분석을 통하여 Anatase 형태임을 확인하였다. 본 연구에서는 탄소가 도입된 산화타이타늄을 이종상촉매로 사용하여 일차 및 이차 알코올 산화반응과 메틸렌 블루 분해 실험에 응용하였다.

  • PDF

딥러닝 알고리즘을 이용한 강우 발생시의 유량 추정에 관한 연구 (A study on discharge estimation for the event using a deep learning algorithm)

  • 송철민
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.246-246
    • /
    • 2021
  • 본 연구는 강우 발생시 유량을 추정하는 것에 목적이 있다. 이를 위해 본 연구는 선행연구의 모형 개발방법론에서 벗어나 딥러닝 알고리즘 중 하나인 합성곱 신경망 (convolution neural network)과 수문학적 이미지 (hydrological image)를 이용하여 강우 발생시 유량을 추정하였다. 합성곱 신경망은 일반적으로 분류 문제 (classification)을 해결하기 위한 목적으로 개발되었기 때문에 불특정 연속변수인 유량을 모의하기에는 적합하지 않다. 이를 위해 본 연구에서는 합성곱 신경망의 완전 연결층 (Fully connected layer)를 개선하여 연속변수를 모의할 수 있도록 개선하였다. 대부분 합성곱 신경망은 RGB (red, green, blue) 사진 (photograph)을 이용하여 해당 사진이 나타내는 것을 예측하는 목적으로 사용하지만, 본 연구의 경우 일반 RGB 사진을 이용하여 유출량을 예측하는 것은 경험적 모형의 전제(독립변수와 종속변수의 관계)를 무너뜨리는 결과를 초래할 수 있다. 이를 위해 본 연구에서는 임의의 유역에 대해 2차원 공간에서 무차원의 수문학적 속성을 갖는 grid의 집합으로 정의되는 수문학적 이미지는 입력자료로 활용했다. 합성곱 신경망의 구조는 Convolution Layer와 Pulling Layer가 5회 반복하는 구조로 설정하고, 이후 Flatten Layer, 2개의 Dense Layer, 1개의 Batch Normalization Layer를 배열하고, 다시 1개의 Dense Layer가 이어지는 구조로 설계하였다. 마지막 Dense Layer의 활성화 함수는 분류모형에 이용되는 softmax 또는 sigmoid 함수를 대신하여 회귀모형에서 자주 사용되는 Linear 함수로 설정하였다. 이와 함께 각 층의 활성화 함수는 정규화 선형함수 (ReLu)를 이용하였으며, 모형의 학습 평가 및 검정을 판단하기 위해 MSE 및 MAE를 사용했다. 또한, 모형평가는 NSE와 RMSE를 이용하였다. 그 결과, 모형의 학습 평가에 대한 MSE는 11.629.8 m3/s에서 118.6 m3/s로, MAE는 25.4 m3/s에서 4.7 m3/s로 감소하였으며, 모형의 검정에 대한 MSE는 1,997.9 m3/s에서 527.9 m3/s로, MAE는 21.5 m3/s에서 9.4 m3/s로 감소한 것으로 나타났다. 또한, 모형평가를 위한 NSE는 0.7, RMSE는 27.0 m3/s로 나타나, 본 연구의 모형은 양호(moderate)한 것으로 판단하였다. 이에, 본 연구를 통해 제시된 방법론에 기반을 두어 CNN 모형 구조의 확장과 수문학적 이미지의 개선 또는 새로운 이미지 개발 등을 추진할 경우 모형의 예측 성능이 향상될 수 있는 여지가 있으며, 원격탐사 분야나, 위성 영상을 이용한 전 지구적 또는 광역 단위의 실시간 유량 모의 분야 등으로의 응용이 가능할 것으로 기대된다.

  • PDF

심층 GAN을 이용한 이미지 완성 어플리케이션 (A application for Image completion with Deep GAN)

  • 조상현;김종득
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 추계학술발표대회
    • /
    • pp.774-777
    • /
    • 2017
  • 사진에는 의도하지 않은 노이즈나 찍는 과정 중에 발생한 실수나 문제로 원치 않게 가려진 부분이 있을 수 있는데, 이미지 완성 어플리케이션은 사용자가 전문적인 프로그램이나 전문가의 도움 없이 노이즈나 가려진 부분을 제거할 수 있도록 하였다. 본 논문에서는 GAN(Generative Adversial Network) 모델에 노이즈가 있는 사진을 입력으로 넣어 노이즈가 제거 된 사진을 생성하도록 하였고, 생성 된 사진과 기존 이미지가 자연스럽게 합성 될 수 있도록 보정을 하여 완성 된 이미지를 출력하는 어플리케이션을 제안한다. GAN 분류 모델의 시그모이드 교차-엔트로피와 생성이미지와 원본이미지간의 평균 제곱 오차를 함께 최소화 하도록 생성 모델을 학습시켰고, 낮은 평균 제곱 오차를 가지는 완성 이미지를 생성 할 수 있었다. 이미지 보정을 통해 생성 된 이미지와 입력 이미지와의 밝기 차이를 해소시켜 좀 더 자연스러운 완성 이미지 결과를 얻을 수 있었다.

반도체 capacitive 지문 센서 및 이미지 합성 방법 (Semiconductor Capacitive Fingerprint Sensor and Image Synthesis Technique)

  • 이정우;민동진;김원찬
    • 전자공학회논문지D
    • /
    • 제36D2호
    • /
    • pp.62-70
    • /
    • 1999
  • 본 논문에서는 저 비용, 고해상도 반도체 지문 센서칩에 대하여 논한다. 제작된 테스트 칩은 $64{\times}256$ 센싱 셀(sensing cell)로 구성되어 있으며, 칩의 크기는 $2.7mm{\times}10.8mm$이다. sensing cell 내부에서 일어나는 전하 재분포를 감지하는 새로운 방식을 이용하여 내부의 기생 캐패시턴스의 영향을 효과적으로 제거하는 방법을 제안하였다. 제안하는 방법은 센싱 셀의 감지 능력을 키우므로 센싱 셀의 크기를 줄일 수 있고, 따라서 고해상도의 이미지를 추출할 수 있다. 표준 0.6${\mu}m$ CMOS 공정을 이용하여 제작된 칩은 600dpi의 해상도를 가지는 지문 이미지를 추출한다. 제조 단가를 낮추기 위하여 지문의 부분 이미지들로부터 전체 지문 이미지를 얻어내는 이미지 합성 방법의 가능성과 문제점에 대해서도 논의하였다.

  • PDF

Pytorch를 통한 멸종위기종 철새 이미지 분류 AI 시스템 (Image Classification of Endangered Species of Migratory Birds Using Pytorch)

  • 심채영;이준우;추민정;황다희;문유진
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제67차 동계학술대회논문집 31권1호
    • /
    • pp.319-320
    • /
    • 2023
  • 본 논문에서는 합성곱 신경망이 적용된 네트워크를 활용해 전이 학습의 과정을 거친 멸종위기종 철새들의 이미지를 분류하는 시스템의 설계과정과 결과를 제시한다. 연구 방법으로 한국 영랑호를 찾아오는 멸종위기종, 천연기념물인 철새들의 이미지를 학습시켜 "가창오리", "노랑부리백로", "물총새" 이 세 종의 철새들을 매우 정확하게 분류하는 것을 확인하였다. 데이터 예비학습과정에서 train data의 개수를 40개로 진행했을때 약 92%의 정확도를 확인 후, train data의 이미지 개수를 50장으로 늘려 더 높은 정확도를 얻을 수 있었다. 이 시스템은 한국을 방문하는 멸종위기종 철새들을 무분별하게 포획하지 않도록 철새 이미지 분류시 활용 가능하다고 사료된다.

  • PDF

아름다운 얼굴의 감성적 특징 (The affective components of facial beauty)

  • 김한경;박수진;정찬섭
    • 감성과학
    • /
    • 제7권1호
    • /
    • pp.23-28
    • /
    • 2004
  • 한국인 20대 여성 얼굴의 DB에서 얼굴의 물리적 특징을 고루 반영하는 대표적인 얼굴들을 선정하고 감성 및 미모 평정을 실시하여 아름다운 얼굴의 감성 특징을 파악하였다. 연구 1에서는 얼굴 감성 평정을 요인 분석하였으며, 그 결과 두 개의 요인으로 전체 변량의 약 65%를 설명할 수 있었다. 이들 두 요인은 각각 샤프(sharp) 요인과 소프트(soft) 요인으로 명명되었다. 연구 2에서는 각 얼굴들에 대해 감성 평정과 미모 평정을 실시하고 둘 간의 상관을 내보았는데, 얼굴 미모는 소프트한 느낌보다는 샤프한 느낌과 상관이 있는 것으로 나타났다. 연구 3에서는 얼굴 합성법을 이용하여 합성 이미지에 대해 미모 평정과 감성 평정을 실시하였다. 그 결과 미인들을 평균한 '상위 평균' 이미지가 '전체 평균' 이미지보다 아름답다고 평가되었으며, 그보다는 약하지만 '상위 평균' 이미지를 과장한 '상위 + 50' 이미지가 '상위 평균' 이미지보다 더 아름답다고 평가되었다. 감성 평정 결과, 전반적으로 '전체 평균' 이미지는 소프트한 느낌을, '상위 평균' 이미지는 샤프한 느낌을 지니고 있는 것으로 나타났으며, '상위 + 50' 이미지는 양쪽 느낌을 고루 지니고 있는 것으로 나타났다. 본 연구의 결과는 아름다운 얼굴이 감성적 특징과 연결될 수 있는 독특한 물리적 특징을 지니고 있으며 이 물리적 특징의 과장이 이중적인 감성 특징을 유발하고 더 아름답게 평정될 수 있음을 시사한다.

  • PDF