• 제목/요약/키워드: 합성 이미지

검색결과 554건 처리시간 0.043초

합성곱 신경망을 이용한 아스팔트 콘크리트 도로포장 표면균열 검출 (Asphalt Concrete Pavement Surface Crack Detection using Convolutional Neural Network)

  • 최윤수;김종호;조현철;이창준
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권6호
    • /
    • pp.38-44
    • /
    • 2019
  • 본 연구에서는 아스팔트 콘크리트 도로포장의 표면균열 검출을 위해 합성곱 신경망을 이용하였다. 합성곱 신경망의 학습에 사용되는 표면균열 이미지 데이터의 양에 따른 합성곱 신경망의 성능향상 정도를 평가하였다. 사용된 합성곱 신경망의 구조는 5개의 층으로 구성되어있으며, 3×3 크기의 convolution filter와 2×2 크기의 pooling kernel을 사용하였다. 합성곱 신경망의 학습을 위해서 도로노면 조사 장비를 통해 구축된 국내 도로포장 표면균열 이미지를 활용하였다. 표면균열 이미지 데이터를 학습한 합성곱 신경망 모델의 표면균열 검출 정확도, 정밀도, 재현율, 미검출율, 과검출율을 평가하였다. 가장 많은 양의 데이터를 학습한 합성곱 신경망 모델의 표면균열 검출 정확도, 정밀도, 재현율은 96.6% 이상, 미검출율, 과검출율은 3.4% 이하의 성능을 나타내었다.

깊은 합성곱 신경망을 이용한 Synthetic Aperture Radar 영상 내 반전 잡음 성분 제거 기법 (A Despeckling Method Using Deep Convolutional Neural Network in Synthetic Aperture Radar Image)

  • 김문흠;이정현;정제창
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2017년도 추계학술대회
    • /
    • pp.66-69
    • /
    • 2017
  • 본 논문에서는 깊은 합성 곱 신경망 (Deep Convolutional Neural Network) 를 이용해서 SAR (Synthetic Aperture Radar) 영상의 반전 잡음 (speckle noise) 성분을 제거하는 기법을 제안하고자 한다. Deep Convolutional Neural Network는 이미지의 데이터 특성에 적합한 딥 러닝 방법이고, 이는 SAR 위성영상의 반전 잡음 제거에 사용해도 효과적이다. 반전 잡음 필터 모델 추정을 위한 학습은 임의로 반전 잡음을 합성한 트레이닝 이미지들과 원본 트레이닝 이미지들을 이용한 회귀모델을 통해 진행된다. 학습을 통해 얻은 반전 잡음 필터는 기존 알고리즘에 비해 우수한 외곽선 보존 성능을 나타냄을 확인하였다.

  • PDF

FACS 기반 GAN 기술을 이용한 가상 영상 아바타 합성 기술 (Video Synthesis Method for Virtual Avatar Using FACS based GAN)

  • 김건형;박수현;이상호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.340-342
    • /
    • 2021
  • 흔히 DeepFake로 불리는 GAN 기술은 소스 영상과 타겟 이미지를 합성하여 타겟 이미지 내의 사람이 소스 영상에서 나타나도록 합성하는 기술이다. 이러한 GAN 기반 영상 합성 기술은 2018년을 기점으로 급격한 성장세를 보이며 다양한 산업에 접목되어지고 있으나 학습 모델을 얻는 데 걸리는 시간이 너무 오래 소요되고, 감정 표현을 인지하는 데 어려움이 있었다. 본 논문에서는 상기 두가지 문제를 해결하기 위해 Facial Action Coding System(FACS) 및 음성 합성 기술[4]을 적용한 가상 아바타 생성 방법에 대해 제안하고자 한다.

합성곱 신경망 기초 실습 사례 개발 (Development of Convolutional Neural Network Basic Practice Cases)

  • 허경
    • 실천공학교육논문지
    • /
    • 제14권2호
    • /
    • pp.279-285
    • /
    • 2022
  • 본 논문에서는 비전공자들을 위한 교양과정으로, 기초 합성곱신경망 과목 커리큘럼을 설계하는데 필수적으로 요구되는 합성곱신경망 기초 실습 사례를 개발하였다. 개발된 실습 사례는 합성곱신경망의 동작원리를 이해시키는 데 초점을 두고, 시각화된 전체 과정을 확인할 수 있도록 스프레드시트를 사용하였다. 개발된 실습 사례는 지도학습 방식의 이미지 훈련데이터 생성, 입력층, 컨볼루션층(합성곱층), 풀링층 그리고 출력층을 차례대로 구현하고, 신규 데이터에 대해 합성곱신경망의 성능을 테스트하는 것으로 구성되었다. 본 논문에서 개발한 실습사례를 확장하여 인식하려는 이미지 개수를 확장하거나, 고화질의 이미지에 대한 압축률을 높이는 합성곱신경망을 만드는 기초 실습 사례를 만들 수 있다. 따라서, 본 합성곱신경망 기초 실습 사례의 활용도가 높다고 할 수 있다.

Artificial Neural Network Method Based on Convolution to Efficiently Extract the DoF Embodied in Images

  • Kim, Jong-Hyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권3호
    • /
    • pp.51-57
    • /
    • 2021
  • 본 논문에서는 카메라의 포커싱과 아웃포커싱에 의해 이미지에서 뿌옇게 표현되는 피사계 심도(Depth of field, DoF) 영역을 효율적인 합성곱 신경망을 통해 찾는 방법을 제안한다. 우리의 접근 방식은 RGB채널기반의 상호-상관 필터를 이용하여 DoF영역을 이미지로부터 효율적으로 분류하고, 합성곱 신경망 네트워크에 학습하기 위한 데이터를 구축하며, 이렇게 얻어진 데이터를 이용하여 이미지-DoF가중치 맵 데이터 쌍을 설정한다. 학습할 때 사용되는 데이터는 이미지와 상호-상관 필터 기반으로 추출된 DoF 가중치 맵을 이용하며, 네트워크 학습 단계에서 수렴률을 높이기 위해 스무딩을 과정을 한번 더 적용한 결과를 사용한다. 테스트 결과로 얻은 DoF 가중치 이미지는 입력 이미지에서 DoF영역을 안정적으로 찾아내며, 제안하는 방법은 DoF영역을 사용자의 ROI(Region of interest)로 활용하여 NPR렌더링, 객체 검출 등 다양한 곳에 활용이 가능하다.

컴퓨터 그래픽 합성 이미지의 저작권 문제에 관한 고찰 (Copyright Problems In case of the Image Synthetics of Computer Graphics)

  • 이향숙
    • 디자인학연구
    • /
    • 제11권2호
    • /
    • pp.59-68
    • /
    • 1998
  • 신 정부의 새 정부 100대과제중 정보화 분야에 관한 발표 내용을 살펴보면, 2002년까지 전국 모든 지역에서 시내요금으로 인터넷을 쓸 수 있는 인터넷 전용망을 구축하고 2010년까지 32조원을 투자해 전국에 ‘초고속통신망(공식명칭은 새 빛 망)’을 구축할 것이며 위성방송수신기, 영상 소프트웨어 등 위성산업을 활성화하여 모든 방송의 디지털화를 유도한다는 것이다. 시장통합과 정보통신 기반 구축에 따르는 국제적 쟁점을 살펴보면 무엇보다도‘표준설정’과‘지적재산권’(intellectual property)보호가 국제질서와 국내제도의 조화되는 측면에서 중요한 현안이 되고 있다. 인간의 창작물로써의 저작물들은 정보화 시대를 맞이하여 비트 화되고 멀티미디어 화되고 있는 상황이다. 시뮬레이션이 지배하는 현대사회에서 정보는 기호화되면 누구나 가까이 접하게 됨으로써 이미지 기호의 수집과 합성은 윤리적 관점을 떠나 하나의 미래를 제시해 줄 것이다. 단지 포스트모던 시대에서 원본과 복제물의 차이와 의미가 소멸 될 것이라는 우려와 함께 문제는 저작자의 지적소유권과 권익을 어떻게 설정할 것인가가 문제이다. 이러한 상황을 접하면서 정보화 시대에서의 디지털의 이론적 개념과 사진이 디지털 화되는 과정을 통해 정보의 공유 성을 제시하고 그 윤리성을 추출해보며, 비주얼 이미지의 컴퓨터 그래픽적 합성을 포스트모던 시대의 이미지 합성 관점에서 살펴보고, 21C를 맞이하는 초고속통신망 시대의 지적 소유권에 관한 고찰을 통해서 문제점을 파악함으로써 궁극적으로 이미지 창출자로서의 앞으로 우리가 나아가야 할 방향과 저작권자의 권익을 도출해 보고 져했다.

  • PDF

기계 학습을 활용한 이미지 결함 검출 모델 개발 (Development of Image Defect Detection Model Using Machine Learning)

  • 이남영;조혁현;정희택
    • 한국전자통신학회논문지
    • /
    • 제15권3호
    • /
    • pp.513-520
    • /
    • 2020
  • 최근 기계 학습을 활용한 비전 검사 시스템의 개발이 활발해지고 있다. 본 연구는 기계 학습을 활용한 결함 검사 모델을 개발하고자 한다. 이미지에 대한 결함 검출 문제는 기계 학습에 있어 지도 학습 방법인 분류 문제에 해당한다. 본 연구에서는 특징을 자동 추출하는 알고리즘과 특징을 추출하지 않는 알고리즘을 기반으로 결함 검출 모델을 개발한다. 특징을 자동 추출하는 알고리즘으로 1차원 합성곱 신경망과 2차원 합성곱 신경망을 활용하였으며, 특징을 추출하지 않는 알고리즘으로 다중 퍼셉트론, 서포트 벡터 머신을 활용하였다. 4가지 모델을 기반으로 결함 검출 모델을 개발하였고 이들의 정확도와 AUC를 기반으로 성능 비교하였다. 이미지 분류는 합성곱 신경망을 활용한 모델 개발이 일반적임에도, 본 연구에서 이미지의 화소를 RGB 값으로 변환하여 서포트 벡터 머신 모델을 개발할 때 높은 정확도와 AUC를 얻을 수 있었다.

iOS 기반 실시간 객체 분리 및 듀얼 카메라 합성 개발 (Development of Real-Time Objects Segmentation for Dual-Camera Synthesis in iOS)

  • 장유진;김지영;이주현;황준
    • 인터넷정보학회논문지
    • /
    • 제22권3호
    • /
    • pp.37-43
    • /
    • 2021
  • 본 논문에서는 모바일 환경에서 실시간으로 전면과 후면 카메라의 객체를 인식하여 객체 픽셀의 영역을 분할하고 이미지 처리를 통해 합성하는 방법을 연구하였다. 이를 위해 Apple사의 iOS에서 제공하는 듀얼 카메라에 DeepLabV3 머신러닝 모델을 적용하여 객체를 분할하였다. 또한 이미지 합성 및 후처리를 위해 Apple사의 코어 이미지와 코어 그래픽 라이브러리를 이용하여 영역의 배경 제거 및 합성 방식을 제안하고 구현하였다. 또한, 이전 연구에 비해 CPU 사용량을 개선하였고 깊이와 DeepLabV3의 처리 속도를 비교하여 처리 결과에 영향을 주는 요소를 분석하였다. 마지막으로 이 두 방식을 활용한 카메라 애플리케이션을 개발하였다.

토지 관련 이미지 분석 데이터 셋 구축을 위한 반자동 annotation 도구 개발 (Development of semi-automatic annotation tool for building land cover image data set)

  • 장달원;이재원;이종설
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 추계학술대회
    • /
    • pp.69-70
    • /
    • 2019
  • 본 논문에서는 토지 정보를 분류하는 연구를 수행하기 위한 이미지 데이터 셋을 개발하는데 필요한 반자동 annotation 도구를 제안한다. 논문에서 제안하는 도구는 합성개구레이더 영상을 입력으로 하고, 물/경작지/숲/건물을 구분하는 시스템을 개발하기 위해서 만들어진 것이나, 다른 목적을 가지는 토지 관련 이미지 분석 시스템의 개발에 사용될 수 있다. 제안하는 도구는 합성개구레이더 영상이 GPS 정보와 같이 입력되었을 때, GPS 정보에 기반하여 토지지목정보를 불러오고, 이를 재정리하여 1차 레이블링 결과를 자동적으로 생성한다. 국가에서 관리하는 토지지목정보는 개발하고자 하는 시스템의 분류 기준에 많은 부분 도움이 되긴 하지만, 일부분 차이점이 있기 때문에 이를 다시 수동으로 수정하는 도구을 동작하여 annotation이 완료된 이미지 데이터를 구축한다.

  • PDF

CNN 기반 서명인식에서 시간정보를 이용한 위조판별 (Fake Discrimination using Time Information in CNN-based Signature Recognition)

  • 최승호;정성훈
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2017년도 제56차 하계학술대회논문집 25권2호
    • /
    • pp.293-294
    • /
    • 2017
  • 본 논문에서는 CNN 기반 서명인식에서 시간정보를 이용하여 위조서명을 보다 정확하게 판별하는 방법을 제안한다. 시간정보를 이용하는 첫 번째 방법은 서명하는 전체 시간을 동일한 개수의 등 간격으로 나누어 각각의 이미지를 얻고 이를 합성하여 이용하는 방법이다. 두 번째 방법은 동일한 개수의 등 간격으로 나누어진 각각의 이미지를 CNN-LSTM 으로 판별하는 방법이다. 동일한 개수의 등 간격으로 나누어진 이미지들에는 서명의 속도에 따른 모양의 차이가 발생하기 때문에 비록 최종 서명의 모양이 원본과 매우 유사하다고 하더라도 속도가 다른 경우 위조임을 판별할 수 있다. 두 명의 서명에 대하여 실험을 한 결과 최종 서명이 매우 유사하더라도 속도가 다른 경우 위조로 판별할 수 있음을 보였다. 다만 이미지 합성 과정에 만들어진 새로운 정보로 인하여 진짜 서명을 가짜로 판별할 수 있는 가능성도 늘어날 수 있음을 확인하였다.

  • PDF