• Title/Summary/Keyword: 합성훈련환경

Search Result 37, Processing Time 0.023 seconds

Development of Radar Super Resolution Algorithm based on a Deep Learning (딥러닝 기술 기반의 레이더 초해상화 알고리즘 기술 개발)

  • Ho-Jun Kim;Sumiya Uranchimeg;Hemie Cho;Hyun-Han Kwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.417-417
    • /
    • 2023
  • 도시홍수는 도시의 주요 기능을 마비시킬 수 있는 수재해로서, 최근 집중호우로 인해 홍수 및 침수 위험도가 증가하고 있다. 집중호우는 한정된 지역에 단시간 동안 집중적으로 폭우가 발생하는 현상을 의미하며, 도시 지역에서 강우 추정 및 예보를 위해 레이더의 활용이 증대되고 있다. 레이더는 수상체 또는 구름으로부터 반사되는 신호를 분석해서 강우량을 측정하는 장비이다. 기상청의 기상레이더(S밴드)의 주요 목적은 남한에 발생하는 기상현상 탐지 및 악기상 대비이다. 관측반경이 넓기에 도시 지역에 적합하지 않는 반면, X밴드 이중편파레이더는 높은 시공간 해상도를 갖는 관측자료를 제공하기에 도시 지역에 대한 강우 추정 및 예보의 정확도가 상대적으로 높다. 따라서, 본 연구에서는 딥러닝 기반 초해상화(Super Resolution) 기술을 활용하여 저해상도(Low Resolution. LR) 영상인 S밴드 레이더 자료로부터 고해상도(High Resolution, HR) 영상을 생성하는 기술을 개발하였다. 초해상도 연구는 Nearest Neighbor, Bicubic과 같은 간단한 보간법(interpolation)에서 시작하여, 최근 딥러닝 기반의 초해상화 알고리즘은 가장 일반화된 합성곱 신경망(CNN)을 통해 연구가 이루어지고 있다. X밴드 레이더 반사도 자료를 고해상도(HR), S밴드 레이더 반사도 자료를 저해상도(LR) 입력자료로 사용하여 초해상화 모형을 구성하였다. 2018~2020년에 발생한 서울시 호우 사례를 중심으로 데이터를 구축하였다. 구축된 데이터로부터 훈련된 초해상도 심층신경망 모형으로부터 저해상도 이미지를 고해상도로 변환한 결과를 PSNR(Peak Signal-to-noise Ratio), SSIM(Structural SIMilarity)와 같은 평가지표로 결과를 평가하였다. 본 연구를 통해 기존 방법들에 비해 높은 공간적 해상도를 갖는 레이더 자료를 생산할 수 있을 것으로 기대된다.

  • PDF

Machine Classification in Ship Engine Rooms Using Transfer Learning (전이 학습을 이용한 선박 기관실 기기의 분류에 관한 연구)

  • Park, Kyung-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.363-368
    • /
    • 2021
  • Ship engine rooms have improved automation systems owing to the advancement of technology. However, there are many variables at sea, such as wind, waves, vibration, and equipment aging, which cause loosening, cutting, and leakage, which are not measured by automated systems. There are cases in which only one engineer is available for patrolling. This entails many risk factors in the engine room, where rotating equipment is operating at high temperature and high pressure. When the engineer patrols, he uses his five senses, with particular high dependence on vision. We hereby present a preliminary study to implement an engine-room patrol robot that detects and informs the machine room while a robot patrols the engine room. Images of ship engine-room equipment were classified using a convolutional neural network (CNN). After constructing the image dataset of the ship engine room, the network was trained with a pre-trained CNN model. Classification performance of the trained model showed high reproducibility. Images were visualized with a class activation map. Although it cannot be generalized because the amount of data was limited, it is thought that if the data of each ship were learned through transfer learning, a model suitable for the characteristics of each ship could be constructed with little time and cost expenditure.

A study on combination of loss functions for effective mask-based speech enhancement in noisy environments (잡음 환경에 효과적인 마스크 기반 음성 향상을 위한 손실함수 조합에 관한 연구)

  • Jung, Jaehee;Kim, Wooil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.3
    • /
    • pp.234-240
    • /
    • 2021
  • In this paper, the mask-based speech enhancement is improved for effective speech recognition in noise environments. In the mask-based speech enhancement, enhanced spectrum is obtained by multiplying the noisy speech spectrum by the mask. The VoiceFilter (VF) model is used as the mask estimation, and the Spectrogram Inpainting (SI) technique is used to remove residual noise of enhanced spectrum. In this paper, we propose a combined loss to further improve speech enhancement. In order to effectively remove the residual noise in the speech, the positive part of the Triplet loss is used with the component loss. For the experiment TIMIT database is re-constructed using NOISEX92 noise and background music samples with various Signal to Noise Ratio (SNR) conditions. Source to Distortion Ratio (SDR), Perceptual Evaluation of Speech Quality (PESQ), and Short-Time Objective Intelligibility (STOI) are used as the metrics of performance evaluation. When the VF was trained with the mean squared error and the SI model was trained with the combined loss, SDR, PESQ, and STOI were improved by 0.5, 0.06, and 0.002 respectively compared to the system trained only with the mean squared error.

Application of Mask R-CNN Algorithm to Detect Cracks in Concrete Structure (콘크리트 구조체 균열 탐지에 대한 Mask R-CNN 알고리즘 적용성 평가)

  • Bae, Byongkyu;Choi, Yongjin;Yun, Kangho;Ahn, Jaehun
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.3
    • /
    • pp.33-39
    • /
    • 2024
  • Inspecting cracks to determine a structure's condition is crucial for accurate safety diagnosis. However, visual crack inspection methods can be subjective and are dependent on field conditions, thereby resulting in low reliability. To address this issue, this study automates the detection of concrete cracks in image data using ResNet, FPN, and the Mask R-CNN components as the backbone, neck, and head of a convolutional neural network. The performance of the proposed model is analyzed using the intersection over the union (IoU). The experimental dataset contained 1,203 images divided into training (70%), validation (20%), and testing (10%) sets. The model achieved an IoU value of 95.83% for testing, and there were no cases where the crack was not detected. These findings demonstrate that the proposed model realized highly accurate detection of concrete cracks in image data.

Intrusion Detection Method Using Unsupervised Learning-Based Embedding and Autoencoder (비지도 학습 기반의 임베딩과 오토인코더를 사용한 침입 탐지 방법)

  • Junwoo Lee;Kangseok Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.8
    • /
    • pp.355-364
    • /
    • 2023
  • As advanced cyber threats continue to increase in recent years, it is difficult to detect new types of cyber attacks with existing pattern or signature-based intrusion detection method. Therefore, research on anomaly detection methods using data learning-based artificial intelligence technology is increasing. In addition, supervised learning-based anomaly detection methods are difficult to use in real environments because they require sufficient labeled data for learning. Research on an unsupervised learning-based method that learns from normal data and detects an anomaly by finding a pattern in the data itself has been actively conducted. Therefore, this study aims to extract a latent vector that preserves useful sequence information from sequence log data and develop an anomaly detection learning model using the extracted latent vector. Word2Vec was used to create a dense vector representation corresponding to the characteristics of each sequence, and an unsupervised autoencoder was developed to extract latent vectors from sequence data expressed as dense vectors. The developed autoencoder model is a recurrent neural network GRU (Gated Recurrent Unit) based denoising autoencoder suitable for sequence data, a one-dimensional convolutional neural network-based autoencoder to solve the limited short-term memory problem that GRU can have, and an autoencoder combining GRU and one-dimensional convolution was used. The data used in the experiment is time-series-based NGIDS (Next Generation IDS Dataset) data, and as a result of the experiment, an autoencoder that combines GRU and one-dimensional convolution is better than a model using a GRU-based autoencoder or a one-dimensional convolution-based autoencoder. It was efficient in terms of learning time for extracting useful latent patterns from training data, and showed stable performance with smaller fluctuations in anomaly detection performance.

Tea Leaf Disease Classification Using Artificial Intelligence (AI) Models (인공지능(AI) 모델을 사용한 차나무 잎의 병해 분류)

  • K.P.S. Kumaratenna;Young-Yeol Cho
    • Journal of Bio-Environment Control
    • /
    • v.33 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • In this study, five artificial intelligence (AI) models: Inception v3, SqueezeNet (local), VGG-16, Painters, and DeepLoc were used to classify tea leaf diseases. Eight image categories were used: healthy, algal leaf spot, anthracnose, bird's eye spot, brown blight, gray blight, red leaf spot, and white spot. Software used in this study was Orange 3 which functions as a Python library for visual programming, that operates through an interface that generates workflows to visually manipulate and analyze the data. The precision of each AI model was recorded to select the ideal AI model. All models were trained using the Adam solver, rectified linear unit activation function, 100 neurons in the hidden layers, 200 maximum number of iterations in the neural network, and 0.0001 regularizations. To extend the functionality of Orange 3, new add-ons can be installed and, this study image analytics add-on was newly added which is required for image analysis. For the training model, the import image, image embedding, neural network, test and score, and confusion matrix widgets were used, whereas the import images, image embedding, predictions, and image viewer widgets were used for the prediction. Precisions of the neural networks of the five AI models (Inception v3, SqueezeNet (local), VGG-16, Painters, and DeepLoc) were 0.807, 0.901, 0.780, 0.800, and 0.771, respectively. Finally, the SqueezeNet (local) model was selected as the optimal AI model for the detection of tea diseases using tea leaf images owing to its high precision and good performance throughout the confusion matrix.

An Acoustic Event Detection Method in Tunnels Using Non-negative Tensor Factorization and Hidden Markov Model (비음수 텐서 분해와 은닉 마코프 모델을 이용한 터널 환경에서의 음향 사고 검지 방법)

  • Kim, Nam Kyun;Jeon, Kwang Myung;Kim, Hong Kook
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.9
    • /
    • pp.265-273
    • /
    • 2018
  • In this paper, we propose an acoustic event detection method in tunnels using non-negative tensor factorization (NTF) and hidden Markov model (HMM) applied to multi-channel audio signals. Incidents in tunnel are inherent to the system and occur unavoidably with known probability. Incidents can easily happen minor accidents and extend right through to major disaster. Most incident detection systems deploy visual incident detection (VID) systems that often cause false alarms due to various constraints such as night obstacles and a limit of viewing angle. To this end, the proposed method first tries to separate and detect every acoustic event, which is assumed to be an in-tunnel incident, from noisy acoustic signals by using an NTF technique. Then, maximum likelihood estimation using Gaussian mixture model (GMM)-HMMs is carried out to verify whether or not each detected event is an actual incident. Performance evaluation shows that the proposed method operates in real time and achieves high detection accuracy under simulated tunnel conditions.

A Study for an Educational Direction in Fashion Design Subjected to Digital Environment I (디지털 환경에 따른 패션분야의 디자인 교육방향 연구 I)

  • 이미량
    • Archives of design research
    • /
    • v.12 no.4
    • /
    • pp.33-44
    • /
    • 1999
  • Fashion is subjected to newness and change by itself. Fashion trend and tendency which could predict next season akeady indicated that digital and cybel11ation environment lliould be factors in fashion. Changes in future life styles and values caused by digital environment must be variables as fashion objects by themselves. Therefore digital environment of a fashion itself and that all encountered in fashion will not only be an existing situation but also an objective and a factor which must be pursued with fashionable sense in future fashion. Advanced technology and social change in relation to digital environment requires that educational method as well as its content will be changed on the scene of education for future. Thus we should seek an educational direction in fashion design for future society in which digital environment requires new paradigm. Subject to these backgrounds this study has an intension to study the change in fashion extensively influenced by expanded digital environment on a limited situational level of fashion design education and to suggest an educational direction for professional in future fashion design who will serve as a core of fashion area in the future. It is essential that education of professional in fashion for future should be achieved by digital-minded level that eagerly understands and accepts future society in which digital environment will be a main axis. It is necessary for this to make them expetience computers, digital media including CAD program. We have to note that education of digital media is more effective and applicable when accomplished in CAI level which can be related and expetienced with fashion education rather than mere functional training in media themselves. Intellectual creativity will be a vety source of producing values and national competence in 21st centtury. Education of design professional in fashion area must positively accept these environmental charactetistics in future society, as well as deeply reflect the education for the future.

  • PDF

Rainfall image DB construction for rainfall intensity estimation from CCTV videos: focusing on experimental data in a climatic environment chamber (CCTV 영상 기반 강우강도 산정을 위한 실환경 실험 자료 중심 적정 강우 이미지 DB 구축 방법론 개발)

  • Byun, Jongyun;Jun, Changhyun;Kim, Hyeon-Joon;Lee, Jae Joon;Park, Hunil;Lee, Jinwook
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.6
    • /
    • pp.403-417
    • /
    • 2023
  • In this research, a methodology was developed for constructing an appropriate rainfall image database for estimating rainfall intensity based on CCTV video. The database was constructed in the Large-Scale Climate Environment Chamber of the Korea Conformity Laboratories, which can control variables with high irregularity and variability in real environments. 1,728 scenarios were designed under five different experimental conditions. 36 scenarios and a total of 97,200 frames were selected. Rain streaks were extracted using the k-nearest neighbor algorithm by calculating the difference between each image and the background. To prevent overfitting, data with pixel values greater than set threshold, compared to the average pixel value for each image, were selected. The area with maximum pixel variability was determined by shifting with every 10 pixels and set as a representative area (180×180) for the original image. After re-transforming to 120×120 size as an input data for convolutional neural networks model, image augmentation was progressed under unified shooting conditions. 92% of the data showed within the 10% absolute range of PBIAS. It is clear that the final results in this study have the potential to enhance the accuracy and efficacy of existing real-world CCTV systems with transfer learning.

Implementation of Speech Recognition and Flight Controller Based on Deep Learning for Control to Primary Control Surface of Aircraft

  • Hur, Hwa-La;Kim, Tae-Sun;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.9
    • /
    • pp.57-64
    • /
    • 2021
  • In this paper, we propose a device that can control the primary control surface of an aircraft by recognizing speech commands. The speech command consists of 19 commands, and a learning model is constructed based on a total of 2,500 datasets. The training model is composed of a CNN model using the Sequential library of the TensorFlow-based Keras model, and the speech file used for training uses the MFCC algorithm to extract features. The learning model consists of two convolution layers for feature recognition and Fully Connected Layer for classification consists of two dense layers. The accuracy of the validation dataset was 98.4%, and the performance evaluation of the test dataset showed an accuracy of 97.6%. In addition, it was confirmed that the operation was performed normally by designing and implementing a Raspberry Pi-based control device. In the future, it can be used as a virtual training environment in the field of voice recognition automatic flight and aviation maintenance.