Electrocardiogram (ECG) signals cannot be counterfeited and can easily acquire signals from both wrists. In this paper, we propose a method of generating a coupling image using direction information of ECG signals as well as its usage in a personal recognition method. The proposed coupling image is generated by using forward ECG signal and rotated inverse ECG signal based on R-peak, and the generated coupling image shows a unique pattern and brightness. In addition, R-peak data is increased through the ECG signal calculation of the same beat, and it is thus possible to improve the recognition performance of the individual. The generated coupling image extracts characteristics of pattern and brightness by using the proposed convolutional neural network and reduces data size by using multiple pooling layers to improve network speed. The experiment uses public ECG data of 47 people and conducts comparative experiments using five networks with top 5 performance data among the public and the proposed networks. Experimental results show that the recognition performance of the proposed network is the highest with 99.28%, confirming potential of the personal recognition.
KIPS Transactions on Software and Data Engineering
/
v.10
no.1
/
pp.9-18
/
2021
Although Generative Adversarial Networks (GANs) have gained great popularity in computer vision and related fields, generating audio signals independently has yet to be presented. Unlike images, an audio signal is a sampled signal consisting of discrete samples, so it is not easy to learn the signals using CNN architectures, which is widely used in image generation tasks. In order to overcome this difficulty, GAN researchers proposed a strategy of applying time-frequency representations of audio to existing image-generating GANs. Following this strategy, we propose an improved method for increasing the fidelity of synthesized audio signals generated by using GANs. Our method is demonstrated on a public speech dataset, and evaluated by Fréchet Inception Distance (FID). When employing our method, the FID showed 10.504, but 11.973 as for the existing state of the art method (lower FID indicates better fidelity).
본 논문에서는 비동기식 상위수준합성기 제작의 일환으로 효율적인 비동기식 제어부의 자동생성에 관한 방법을 제안한다. 제안된 방법은 목적시스템의 사양으로써 주어진 제어데이터흐름그래프로부터 일련의 체계적인 변환과정을 통하여, 제어부를 구성할 제어회로들에 대응하는 계층적으로 분할된 비동기식 유한상태기들의 집합을 유도한다. 유도된 비동기식 유한상태기들은 현존하는 비동기식 제어회로 합성기를 통하여 해저드 없는 비동기식 제어회로들로 합성되며, 이들은 상호간에 4단계 핸드셰이킹에 기반한 신호교환을 통하여 동작하면서 전체 시스템을 제어하는 계층적으로 분할된 비동기식 제어부를 구성한다. 획득한 제어부는 계층.분산적이며, 면적, 성능 및 합성시간의 측면에서 기존방식을 통하여 생성한 제어부에 비해 우월하다.
'Deepfake' refers to a video synthesis technique that utilizes various artificial intelligence technologies to create highly realistic fake content, causing serious confusion to individuals and society by being used for generating fake news, fraud, malicious impersonation, and more. To address this issue, there is a need for methods to detect malicious images generated by deepfake accurately. In this paper, we extract and analyze saliency features from deepfake and real images, and detect candidate synthesis regions on the images, and finally construct an automatic deepfake detection model by focusing on the extracted features. The proposed saliency feature-based model can be universally applied in situations where deepfake detection is required, such as synthesized images and videos. To demonstrate the performance of our approach, we conducted several experiments that have shown the effectiveness of the deepfake detection task.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2019.11a
/
pp.69-70
/
2019
본 논문에서는 토지 정보를 분류하는 연구를 수행하기 위한 이미지 데이터 셋을 개발하는데 필요한 반자동 annotation 도구를 제안한다. 논문에서 제안하는 도구는 합성개구레이더 영상을 입력으로 하고, 물/경작지/숲/건물을 구분하는 시스템을 개발하기 위해서 만들어진 것이나, 다른 목적을 가지는 토지 관련 이미지 분석 시스템의 개발에 사용될 수 있다. 제안하는 도구는 합성개구레이더 영상이 GPS 정보와 같이 입력되었을 때, GPS 정보에 기반하여 토지지목정보를 불러오고, 이를 재정리하여 1차 레이블링 결과를 자동적으로 생성한다. 국가에서 관리하는 토지지목정보는 개발하고자 하는 시스템의 분류 기준에 많은 부분 도움이 되긴 하지만, 일부분 차이점이 있기 때문에 이를 다시 수동으로 수정하는 도구을 동작하여 annotation이 완료된 이미지 데이터를 구축한다.
Jae-Ha Choi;Sung-Yeon Kim;Hae-Rin Byeon;Se-Yeon Lee;Jung-Soo Lee
Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.904-905
/
2023
본 논문에서는 의료 영상 생성을 위한 Med-StyleGAN2를 제안한다. 생성적 적대 신경망은 이미지 생성에는 효과적이지만, 의료 영상 생성에는 한계점을 가지고 있다. 따라서 본 연구에서는 의료 영상 생성에 특화된 StyleGAN 기반 학습 모델을 제안한다. 이는 다양한 의료 영상 어플리케이션에 활용할 수 있으며, 생성된 의료 영상에 대한 정량적, 정성적 평가를 수행함으로써 의료 영상 생성 분야의 발전 가능성에 대해 연구한다.
Journal of the Korea Institute of Information Security & Cryptology
/
v.29
no.6
/
pp.1383-1392
/
2019
Adversarial attack, which geneartes adversarial data to make target model misclassify the input data, is able to confuse real life applications of classification models and cause severe damage to the classification system. An Black-box adversarial attack learns a substitute model, which have similar decision boundary to the target model, and then generates adversarial data with the substitute model. Jacobian-based data augmentation is used to synthesize the training data to learn substitutes, but has a drawback that the data synthesized by the augmentation get distorted more and more as the training loop proceeds. We suggest data augmentation with 'decay factor' to alleviate this problem. The result shows that attack success rate of our method is higher(around 8.5%) than the existing method.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.292-294
/
2020
3DoF+ 및 6DoF를 구현하기 위해선 사용자의 움직임에 따른 운동시차를 반영하여 가상 시점 이미지를 렌더링 해야 한다. 이를 위한 방법 중 하나인 멀티뷰 기반 합성 방법은 멀티뷰 데이터(텍스쳐, 뎁스맵, 카메라 파라미터)를 기반으로 가상 시점 이미지를 합성한다. 본 논문은 멀티뷰 기반 합성의 과정 중 하나인 메쉬 구성 단계에서 뎁스맵과 텍스쳐의 엣지 정보를 고려한 효율적인 메쉬 구성을 제안한다. 제안 방법은 각 2×2 화소 격자 단위로 엣지의 방향을 측정하고 측정한 엣지를 고려한 보간으로 1/2 화소들을 생성한 뒤, 이 새로운 화소들을 메쉬 구성에 이용하여 기존 방법보다 특성이 비슷한 화소끼리 메쉬를 구성하게 하였다. 제안한 방법으로 합성된 이미지는 뭉게짐 현상과 잔상 현상이 사라진 결과를 보였다.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.517-519
/
2004
MPEG-4는 이미지, 비디오. 오디오와 다양한 기하객체 및 텍스트객체 등 설러 가지 멀티미디어 데이터를 각 객체 단위로 합성하여 멀티미디어 컨텐츠를 구성함으로써 멀티미디어 데이터에 대한 재사용성과 효율성을 높이며, 사용자와의 상호작용이 가능한 시청각 장면을 생성하고 전송을 가능하게 한다. 유비쿼터스 컴퓨팅에 대한 연구가 개발하게 전개되고 있는 이때, PC에서뿐만 아니라 언제 어디서나 가능한 모바일 환경에서 다양한 사용자 인터랙션에 중점을 두고 카드메일, 간단 게임 저작 등을 가능하게 함으로써 poA환경에서 전문적인 저작도구를 개발하는 것이 필요하다. 본 논문은 poA환경에서 기하객체와 텍스트, 이미지 등의 객체들을 이용하여 MPEG-4 컨텐츠 저작을 위한 씬 트리를 생성하고 이에 대한 인코딩을 통하여 BIFS 파일 포맷을 형성하고 멀티플렉서를 통하여 MPEG-4 파일을 생성함으로써 PDA환경에서 직접적이고도 시각적인 저작이 가능한 MPEG-4 건텐츠 저작시스템을 제안하고 그 개발 결과를 보인다.
In this research, we introduce a novel approach that employs a 3D convolutional neural network (CNN) model to predict the permeability of Gas Diffusion Layers (GDLs). For training the model, we create an artificial dataset of GDL representative volume elements (RVEs) by extracting morphological characteristics from actual GDL images obtained through X-ray tomography. These morphological attributes involve statistical distributions of porosity, fiber orientation, and diameter. Subsequently, a permeability analysis using the Lattice Boltzmann Method (LBM) is conducted on a collection of 10,800 RVEs. The 3D CNN model, trained on this artificial dataset, well predicts the permeability of actual GDLs.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.