• 제목/요약/키워드: 합성곱 인공신경망

검색결과 125건 처리시간 0.029초

WFSO 알고리즘을 이용한 인공 신경망과 합성곱 신경망의 학습 (Training Artificial Neural Networks and Convolutional Neural Networks using WFSO Algorithm)

  • 장현우;정성훈
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권5호
    • /
    • pp.969-976
    • /
    • 2017
  • 본 논문에서는 최적화 알고리즘으로 개발된 WFSO(Water Flowing and Shaking Optimization) 알고리즘을 사용한 인공신경망 과합성공 신경망의 학습 방법을 제안한다. 최적화 알고리즘은 다수의 후보 해를 기반으로 탐색해 나가기 때문에 일반적으로 속도가 느린 단점이 있으나 지역 최소값에 거의 빠지지 않고 병렬화가 용이하며 미분 불가능한 활성화함수를 갖는 인공신경망 학습도 가능하고 구조와 가중치를 동시에 최적화 할 수 있는 장점이 있다. 본 논문에서는 WFSO 알고리즘을 인공신경망 학습에 적용하는 방법을 설명하고 다층 인공신경망과 합성곱 신경망에서 오류역전파 알고리즘과 성능을 비교한다.

결정그래프 합성곱 인공신경망을 통한 소재의 생성 에너지 예측 (Prediction of Material's Formation Energy Using Crystal Graph Convolutional Neural Network)

  • 이현기;서동화
    • 한국전기전자재료학회논문지
    • /
    • 제35권2호
    • /
    • pp.134-142
    • /
    • 2022
  • 기존의 시행착오를 거쳐 소재를 개발하는 방법은 조금씩 한계를 보이고 있는데, 왜냐하면 산업과 기술이 고도화되고 기능성 소재가 가져야 하는 특성은 복잡해지면서 그 요구치가 높아지고 있기 때문이다. 이를 극복하기 위해 데이터 기반의 인공신경망으로 복잡한 소재 공간을 빠르게 탐색하여 소재 개발을 가속화하고자 하는 연구들이 진행되고 있다. 특히 결정그래프 합성곱 인공신경망은 결정 소재의 구조에 따른 특성을 학습하는 인공신경망으로 소재의 특성(생성 에너지, 밴드갭, 부피 탄성 계수 등)을 양자역학 기반의 제일원리 계산보다 빠르게 예측한다. 본 논문에서는 46,629개의 결정구조 데이터와 그 생성 에너지를 공공데이터베이스에서 불러와 결정그래프 합성곱 인공신경망 모델을 학습시키고 이를 특성 예측에 적용해 보는 예제를 설명한다. 이를 통해 간단한 프로그래밍 지식으로 소재 특성 예측 모델을 재현해 보고 원하는 데이터 셋과 연구 분야에 적용할 수 있을 것으로 기대된다. 인공지능 모델의 개발은 앞으로 더 복잡한 특성을 가져야만 하는 소재의 개발을 위해 넓은 범위의 소재를 탐색해야만 하는 과정을 획기적으로 단축시켜 소재 개발의 가속화를 촉진시킬 것으로 생각된다.

뇌전증 환자의 MEG 데이터에 대한 분류를 위한 인공신경망 적용 연구 (Artificial neural network for classifying with epilepsy MEG data)

  • 한유진;김준식;김재희
    • 응용통계연구
    • /
    • 제37권2호
    • /
    • pp.139-155
    • /
    • 2024
  • 본 연구는 좌측 해마 경화를 보인 내측두엽 뇌전증(left mTLE, mesial temporal lobe epilepsy with left hippocampal sclerosis) 환자군과 우측 해마 경화를 보인 내측두엽 뇌전증(right mTLE, mesial temporal lobe epilepsy with right hippocampal sclerosis) 환자군 그리고 건강한 대조군(healthy controls; HC)으로부터 측정한 뇌자도(magnetoencephalography; MEG) 데이터로 각 그룹을 분류하는 다중 분류 작업에 다양한 인공신경망을 적용하고 그 결과를 비교해 보고자 하였다. 합성곱 신경망, 순환 신경망 그리고 그래프 신경망으로 모델링한 결과, k-fold 정확도 평균은 합성곱 신경망 기반 모델, 그래프 신경망 기반 모델, 순환 신경망 기반 모델 순으로 우수하였다. 또한, 수행 시간은 순환 신경망 기반 모델, 그래프 신경망 기반 모델, 합성곱 신경망 기반 모델 순으로 우수하였다. 정확도 성능과 시간 면에서 모두 좋은 수치를 보이며, 네트워크 데이터의 확장성이 뛰어난 그래프 신경망이 앞으로 뇌 연구에 활용되기 적합한 모델임을 강조하고자 한다.

결합된 파라메트릭 활성함수를 이용한 합성곱 신경망의 성능 향상 (Performance Improvement Method of Convolutional Neural Network Using Combined Parametric Activation Functions)

  • 고영민;이붕항;고선우
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권9호
    • /
    • pp.371-380
    • /
    • 2022
  • 합성곱 신경망은 이미지와 같은 격자 형태로 배열된 데이터를 다루는데 널리 사용되고 있는 신경망이다. 일반적인 합성곱 신경망은 합성곱층과 완전연결층으로 구성되며 각 층은 비선형활성함수를 포함하고 있다. 본 논문은 합성곱 신경망의 성능을 향상시키기 위해 결합된 파라메트릭 활성함수를 제안한다. 결합된 파라메트릭 활성함수는 활성함수의 크기와 위치를 변환시키는 파라미터를 적용한 파라메트릭 활성함수들을 여러 번 더하여 만들어진다. 여러 개의 크기, 위치를 변환하는 파라미터에 따라 다양한 비선형간격을 만들 수 있으며, 파라미터는 주어진 입력데이터에 의해 계산된 손실함수를 최소화하는 방향으로 학습할 수 있다. 결합된 파라메트릭 활성함수를 사용한 합성곱 신경망의 성능을 MNIST, Fashion MNIST, CIFAR10 그리고 CIFAR100 분류문제에 대해 실험한 결과, 다른 활성함수들보다 우수한 성능을 가짐을 확인하였다.

합성곱 신경망을 이용한 온실 파프리카의 작물 생체중 추정 (Estimation of Sweet Pepper Crop Fresh Weight with Convolutional Neural Network)

  • 문태원;박준영;손정익
    • 생물환경조절학회지
    • /
    • 제29권4호
    • /
    • pp.381-387
    • /
    • 2020
  • 작물의 생체중을 추정하기 위해 다양한 연구가 시도되었지만, 이미지를 활용하여 생체중을 추정한 예는 없었다. 최근 합성곱 신경망을 사용한 이미지 처리 연구가 늘고 있으며, 합성곱 신경망은 미가공 데이터를 그대로 사용할 수 있다. 본 연구에서는 합성곱 신경망을 이용하여 미가공 데이터 상태인 특정 시점의 파프리카 이미지를 입력으로 작물의 생체중을 추정하도록 학습하였다. 실험은 파프리카(Capsicum annuum L.)를 재배하는 온실에서 수행하였다. 합성곱 신경망의 출력값인 생체중은 파괴조사를 통해 수집한 데이터를 기반으로 회귀 분석하였다. 학습된 합성곱 신경망의 결정 계수(R2)의 최고값은 0.95로 나타났다. 생체중 추정값은 실제 측정값과 매우 유사한 경향성을 보여주었다.

삼차원 합성곱 신경망과 X선 단층 영상에서 추출한 형태학적 특징을 이용한 PEMFC용 가스확산층의 투과도 예측 (Permeability Prediction of Gas Diffusion Layers for PEMFC Using Three-Dimensional Convolutional Neural Networks and Morphological Features Extracted from X-ray Tomography Images)

  • 유한길;윤군진
    • Composites Research
    • /
    • 제37권1호
    • /
    • pp.40-45
    • /
    • 2024
  • 본 연구에서는 고분자 전해질막 연료전지용 가스확산층의 투과도를 예측하기 위해 삼차원 합성곱 신경망 모델을 사용하는 방법론을 소개한다. 먼저, 기계학습 모델을 학습시키기 위해 X-선 단층 촬영을 통해 얻은 실제 가스확산층 이미지에서 형태학적 특성을 추출해 가스확산층의 대표 체적 요소로 이루어진 인공 데이터셋을 생성한다. 이러한 형태학적 특성은 다공성, 섬유 배향, 직경의 통계적 분포가 포함된다. 구축한 인공 데이터셋 대표 체적 요소들의 투과도를 평가하기 위해 격자 볼츠만 방법이 사용되었으며 각각의 대표 체적 요소들의 투과도를 도출하였다. 이러한 인공 데이터셋을 통해 삼차원 합성곱 신경망 모델을 학습시켰으며 인공 데이터셋을 학습한 삼차원 합성곱 신경망 모델이 실제 가스확산층의 대표 체적 요소 투과도 또한 잘 예측하는 것을 확인하였다.

이미지로부터 피사계 심도 영역을 효율적으로 추출하기 위한 합성곱 신경망 기법 (Convolutional Neural Network Technique for Efficiently Extracting Depth of Field from Images)

  • 김동희;김종현
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제62차 하계학술대회논문집 28권2호
    • /
    • pp.429-432
    • /
    • 2020
  • 본 논문에서는 카메라의 포커싱과 아웃포커싱에 의해 이미지에서 뿌옇게 표현되는 DoF(Depth of field, 피사계 심도) 영역을 합성곱 신경망을 통해 찾는 방법을 제안한다. 우리의 접근 방식은 RGB채널기반의 상호-상관 필터를 이용하여 DoF영역을 이미지로부터 효율적으로 분류하고, 합성곱 신경망 네트워크에 학습하기 위한 데이터를 구축하며, 이렇게 얻어진 데이터를 이용하여 이미지-DoF가중치 맵 데이터 쌍을 설정한다. 학습할 때 사용되는 데이터는 이미지와 상호-상관 필터 기반으로 추출된 DoF 가중치 맵을 이용하며, 네트워크 학습 단계에서 수렴률을 높이기 위해 스무딩을 과정을 한번 더 적용한 결과를 사용한다. 본 논문에서 제안하는 합성곱 신경망은 이미지로부터 포커싱과 아웃포커싱된 DoF영역을 자동으로 추출하는 과정을 학습시키기 위해 사용된다. 테스트 결과로 얻은 DoF 가중치 이미지는 입력 이미지에서 DoF영역을 빠른 시간 내에 찾아내며, 제안하는 방법은 DoF영역을 사용자의 ROI(Region of interest)로 활용하여 NPR렌더링, 객체 검출 등 다양한 곳에 활용이 가능하다.

  • PDF

저해상도 영상 자료를 사용하는 얼굴 표정 인식을 위한 소규모 심층 합성곱 신경망 모델 설계 (A Design of Small Scale Deep CNN Model for Facial Expression Recognition using the Low Resolution Image Datasets)

  • 살리모프 시로지딘;류재흥
    • 한국전자통신학회논문지
    • /
    • 제16권1호
    • /
    • pp.75-80
    • /
    • 2021
  • 인공 지능은 놀라운 혜택을 제공하는 우리 삶의 중요한 부분이 되고 있다. 이와 관련하여 얼굴 표정 인식은 최근 수십 년 동안 컴퓨터 비전 연구자들 사이에서 뜨거운 주제 중 하나였다. 저해상도 이미지의 작은 데이터 세트를 분류하려면 새로운 소규모 심층 합성곱 신경망 모델을 개발해야 한다. 이를 위해 소규모 데이터 세트에 적합한 방법을 제안한다. 이 모델은 기존 심층 합성곱 신경망 모델에 비해 총 학습 가능 가중치 측면에서 메모리의 일부만 사용하지만 FER2013 및 FERPlus 데이터 세트에서 매우 유사한 결과를 보여준다.

깊이맵 생성 알고리즘의 합성곱 신경망 구현 (Implementing a Depth Map Generation Algorithm by Convolutional Neural Network)

  • 이승수;김홍진;김만배
    • 방송공학회논문지
    • /
    • 제23권1호
    • /
    • pp.3-10
    • /
    • 2018
  • 깊이맵은 현재 다양한 분야에서 활용되고 있다. 이러한 깊이맵을 인공 신경망으로 생성하는 연구가 최근 관심을 받고 있다. 본 논문에서는 기존의 기 제작된 깊이맵 생성 알고리즘을 합성곱 신경망으로 구현할 수 있는지에 대한 타당성을 검증한다. 먼저 깊이맵은 관심맵과 운동 히스토리 영상의 가중치 합으로 얻는다. 실험영상과 깊이맵을 합성곱 신경망의 입력과 출력으로 하여, 신경망을 학습시킨다. 정성적, 정량적 실험 결과는 제안한 합성곱 신경망이 깊이맵 생성 방법을 대체할 수 있다는 것을 보여준다.

딥러닝을 이용한 인공위성영상의 토지피복지도 생성기술 (Satellite Land Cover Map Generation Using Deep Learning)

  • 김영은;이혁재;박형섭;유광선;김창익
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 하계학술대회
    • /
    • pp.240-242
    • /
    • 2019
  • 본 논문에서는 대한민국 국토에 대한 토지피복지도를 인공위성 영상으로부터 생성하는 기술을 제안한다. 제안하는 방법은 먼저 합성곱 신경망을 이용하여 인공위성 영상의 각 패치를 4 종류의 토지 용도로 분류한다. 이후 인공위성 영상과 토지 용도 분류 결과를 조건부 랜덤 필드에 적용하여 픽셀 단위로 색상과 질감이 유사한 영역을 같은 토지 용도로 분류될 수 있도록 하여 정확한 토지피복지도를 생성한다. 현재 대한민국 국토에 대한 토지피복지도 생성을 위해 구축된 데이터 세트가 없기 때문에 본 연구에서는 합성곱 신경망 학습을 위한 데이터 세트를 직접 구축하였다. 이를 위해 환경공간정보 서비스 웹사이트로부터 인공위성 영상을 취득하고, 각 영상을 패치 단위로 나누어 토지 용도를 직접 분류하였다. 실험 결과를 통해 제안하는 토지 용도 분류 합성곱 신경망의 성능을 평가하였으며, 최종 생성된 토지피복지도는 제안하는 방법이 효과적으로 토지 용도를 분류할 수 있음을 나타낸다.

  • PDF