This study was performed to investigate types and formation mechanism of cracks in two Al alloy welds, A5083 and A7NO1 spot-welded by pulse Nd: YAG laser, using SEM, EPMA and Micro-XRD. In the weld zone, three types of crack were observed: center line crack($C_{C}$), diagonal crack($C_{D}$), and U shape crack($C_{U}$). Also, HAZ crack($C_{H}$), was observed in the HAZ region, furthermore, mixing crack($C_{M}$), consisting of diagonal crack and HAZ crack was observed.White film was formed at the hot crack region in the fractured surface after it was immersed to 10%NaOH water. In the case of A5083 alloy, white films in C crack and $C_D crack region were composed of low melting phases, Fe₂Si$Al_8$ and eutectic phases, Mg₂Al₃ and Mg₂Si. Such films observed near HAZ crack were also consist of eutectic Mg₂Al₃. In the case of A7N01 alloy, eutectic phases of CuAl₂, $Mg_{32}$ (Al,Zn) ₃, MgZn₂, Al₂CuMg and Mg₂Si were observed in the whitely etched films near $C_{C}$ crack and $C_{D}$ crack regions. The formation of liquid films was due to the segregation of Mg, Si, Fe in the case of A5083 alloy and Zn, Mg, Cu, Si in the case of A7N01 aooly, respectively.The $C_{D}$ and $C_{C}$ cracks were regarded as a result of the occurrence of tensile strain during the welding process. The formation of $C_{M}$ crack is likely to be due to the presence of liquid film at the grain boundary near the fusion line in the base metal as well as in the weld fusion zone during solidification. The $C_{U}$ crack is considered a result of the collapsed keyhole through incomplete closure during rapid solidification. (Received October 7, 1999)
Friction stir spot welding between 5454 aluminum alloy sheets with the different thicknesses of 1.4 and 1.0 mm was performed. In the welding process, the tool for welding was rotated ranging from 500 to 2500, and plunged to the depth of 1.8 mm under a constant tool plunge speed of 100 mm/min. And then, the rotating tool was maintained at the plunge depth during the dwell time ranging from 0 to 7 sec. The pull-out speed of the rotating tool was 100 mm/min. The increase of tool rotation speed resulted in the change of the macrostructure of friction-stir-spot-welded zone, especially the geometry of welding interface. The results of the tensile shear test showed that the total displacement and toughness of the welds were increased with the increase of the tool rotation speed, although the maximum tensile shear load was decreased. However, the change in the dwell time at the plunge depth of the tool did not produce the remarkable variation in the macrostructure and mechanical properties of the welds. In all cases, the average hardness in friction-stir-spot-welded zone was higher than that of the base metal zone. By the friction stir spot welding technique, the welds with the excellent mechanical properties than the mechanically-clinched joints could be obtained.
중성자에 조사 $(fluence: 2.3\times10^{19}ncm^{-2}, 553 K, E\geq1.0 MeV)$된 Mn-Mo-Ni 저 합금강 모재의 열처리 회복 거동을 조사하기 위하여 등시소둔과 등온소둔을 수행하여 회복 활성화에너지, 회복 반응차수 그리고 회복 반응률상수를 결정하였다. 열처리 후 회복은 비커스 미세 고온경도기로 측정하였고 실험결과를 이용, 열처리 회복단계, 회복결함들의 거동 및 회복 kinetics을 분석하였다. 실험결과 2단계의 회복구간(stage I : 703-753K, stage II : 813K-873K)이 나타났으며 각 단계의 회복활성화 에너지는 2.50 eV(1단계) 및 2.93 eV(2단계)이었다. 조사재와 비조사재의 등시소둔 곡선의 비교를 통하여 813K에서 RAH(radiation anneal hardening) 피크를 확인할 수 있었다. 743K 및 833K에서 수행한 등온소둔 결과, 회복의 60%가 모두 120분 이내에 일어나는 것으로 관찰되었다. 회복 반응차수는 두 회복구간에서 모두 2로 나타났으며 회복 반응율상수는 $3.4\times10^{-4}min^{-1}$(1단계)과 $7.1\times10^{-4}min^{-1}$(2단계) 이었다. 이상의 결과와 기 발표된 자료들을 함께 분석한 결과, 본 재료의 회복은 오랜 중성자조사로 형성된 점결함 집합체들이 열처리에 의한 분해와 Fe 기지에 격자간 원자로 존재하던 self-interstitial들과 vacancy들의 재결합에 의해 일어나는 것으로 해석된다.
본 연구는 냉간가공과 열처리를 통해 Cu-26.65Zn-4.05Al-0.31Ti(wt%) 형상기억합금의 결정립을 미세화하기 위한 목적으로 수행하였다. 냉간가공을 위하여는 α-상이 가능한 많이 존재하는 (α+β)-조직을 가져야 하는데, 이는 550℃에서 열처리함으로써 얻었고, 최종두께 1mm로 냉간압연하였다. 총 압연율은 70%와 90%이었다. 냉간압연한 판재를 800℃에서 가열 후 급랭함으로써 형상기억특성을 갖는 상으로 변태시켰으며, 이 대 결정립크기를 측정한 결과, 열간압연한 경우보다 냉간압연과 열처리를 한 경우의 결정립이 월등히 작아졌음을 보여주었다. 냉간압연과 열처리를 한 경우에는 냉간압연 변형율이 큰 경우가 결정립이 더 작아지는 경향을 보였다. 또한 결정립크기가 작아짐에 따라 변태온도가 저하되었으며 오스테나이트상이 더 안정하게 되었음을 확인할 수 있었다. In this study, cold-rolling and appropriate annealing was adopted for the grain refining of Cu-26.65Zn-4. 05Al-0.31Ti(wt%) shape memory alloy. For the cold deformation of this alloy the ducti1e α-phase must be contained. After heat treatment at 550℃ the (α+β)-dual phase with 40vol.% α-phase was obtained which could be rolled at room temperature. This alloy was cold rolled into a final thickness of 1.0mm with total reduction degrees of 70% and 90%. The rolled sheets were betanized at 800℃ for various times, then quenched into ice water. The grain size of co]d rolled samples were 60∼80 ㎛ which is much smaller comparing with the hot-rolled samples. And the 90% rolled sample showed smaller grain size than the case of the 70% rolled one. The small grain size had influence on the phase transformation temperatures and stabilization of the austenitic phases.
최근에 상용차용 디젤 엔진의 성능 향상을 목적으로 엔진 설계가 급격히 변화되면서 캠 팔로우어(cam follower)와 캠(cam) 사이에 작용하는 접동면 하중의 증가로 접동면에서의 마모가 중요한 문제가 되고 있다. 본 연구에서는 기존의 주절체 및 소결합금 캠 팔로우어에 비해 내마모성이 우수한 세라믹 캠 팔로우어를 개발하였다. 잔류 응력을 완화시켜주는 중간층을 사용하지 않고 질화규소($Si_3N_4$) 팁과 중탄소강을 활성납재를 사용하여 직접 접합후 냉각시키는 과정에서 두 모재의 열팽창계수차에 의한 크라우닝(crowning, R) 이 형성되도록 하였다. 접합에 사용한 중탄소강은 열팽창시 이력(hysteresis) 거동을 나타내었으며, $A_{c1}$ 변태점인 $723^{\circ}C$ 이하에서 접합할 경우 원하는 크라우닝이 형성되었다. 접합온도가 $723^{\circ}C$ 이상이 되면 크라우닝 (R) 값이 온도에 따라 지수함수적으로 증가하였으며 이는 중탄소강의 상변태에 의한 열팽창.수축의 이력 특성으로 설명되어질 수 있었다. 규격에 맞는 크라우닝이 형성되는 최적 접합 온도는 $700~720^{\circ}C$의 범위였다. 질화규소와 중탄소강의 직접 접합방법으로 접합과 동시에 크라우닝을 형성시키고 제어함으로써 난가공재인 세라믹을 곡면 가공하지 않고도 적당한 곡률을 갖는 저가의 세라믹 캠 팔로우어를 제조할 수 있었다.
Co/Nb 이중층 구조의 RTA처리에 따른 층역전 현상을 이용하여 ${CoSi}_{2}$를 형성하였다. 중간에 삽입된 Nb층은 산화성향이 매우 커서 Si와 Co의 균일한 반응을 방해하는 Si 기판 표면의 산화막을 충분히 제거해 줄 수 있을 뿐만아니라 Co 의 실리사이드화 반응시에 Co와 결합하여 안정한 화합물을 형성해서 기판 Si의 과잉 소모를 막아 줌으로써 실리사이드화 반응을 제어하는 역할을 하는 것으로 나타났다. Co/Nb이중층 구조를 $800^{\circ}C$에서 열처리하여 얻은 최종 구조는 ${NB}_{2}{O}_{5}$/${Co}_{2}$Si.CoSi/${NbCo}_{x}$/Nb(O,C)/${CoSi}_{2}$/Si으로 이층들간의 역전과 안정한 ${CoSi}_{2}$상의 형성은 비교적 고온인 약 $700^{\circ}C$부터 시작되었으며, 전 열처리 온도구간에서 Nb의 실리사이드가 발견되지 않았는데, 이러한 점들은 모두 Nb 산화물이나 Co-Nb합금층과 같은 매우 안정한 중간 구조상들이 Co와 Si의 원활한 이동을 제한하기 때문으로 보인다.
금속기지 복합물은 구조용 재료로서 매우 우수한 성질을 지니고 있어 광범위하게 연구되어져 왔다. $Al_2O_3$와 SiC는 그들의 우수한 기계적 특성 때문에 일반적인 보강재로서 사용되어져 왔다. 그러나 이들 세라믹 보강재는 비싼 재조 비용 때문에 특별한 목적을 위해서만 한정되어 사용되어져 왔다. 본 연구에서는 우리는 Al 합금기지 복합물에서 SHS법에 의해 합성된 $Al_2O_3$-SiC 분말의 보강재로서의 응용 가능성을 살펴보았다. 또한 $Al_2O_3$단섬유를 Al기지 하이브리드 복합물에 적용하기 위하여 합성된 분말과 함께 첨가하였다. 25vol% 강화재의 복합물을 제조하기 위하여 용탕단조법을 사용하였다. 미세구조와 결정구조는 SEM, OM 그리고 XRD로 관찰하였고 압축시험과 마모시험으로 기계적인 성질들을 조사하였다.
In this paper, high temperature oxidation behavior of newly developed alloys, Ti-6Al-4Fe and Ti-6Al-1Fe, is examined. To understand the effect of Fe on the air oxidation behavior of the Ti-Al-Fe alloy system, thermal oxidation tests are carried out at $700^{\circ}C$ and $800^{\circ}C$ for 96 hours. Ti-6Al-4V alloy is also prepared and tested under the same conditions for comparison with the developed alloys. The oxidation resistance of the Ti-Al-Fe alloy system is superior to that of Ti-6Al-4V alloy. Ti-6Al-4V shows the worst oxidation resistance for all test conditions. This is not a result of the addition of Fe, but rather it is due to the elimination of V, which has deleterious effects on high temperature oxidation. The oxidation of the Ti-Al-Fe alloy system follows the parabolic rate law. At $700^{\circ}C$, Fe addition does not have a noticeable influence on the amount of weight gain of all specimens. However, at $800^{\circ}C$, Ti-6Al-4Fe alloy shows remarkable degradation compared to Ti-6Al-1Fe and Ti-6Al. It is discovered that the formation of $Al_2O_3$, a diffusion resistance layer, is remarkably hindered by a relative decrease of the ${\alpha}$ volume fraction. This is because Fe addition increases the volume fraction of ${\beta}$ phase within the Ti-6Al-xFe alloy system. Activities of Al, Ti, and Fe with respect to the formation of oxide layers are calculated and analyzed to explore the oxidation mechanism.
원자력발전소 열교환기 튜브의 대부분은 구리, 티타늄, 인코넬합금 등의 비자성체로 제작되어 있으나 2차 터빈계통의 습분분리재열기(moisture separator & reheater), 급수가열기 등의 튜브는 고압, 고온 등의 열악한 운전조건에서 상대적으로 고온 강도가 우수한 탄소강 또는 페라이트계열 스테인레스강 등의 자성체로 제작되어 있다. 특히 습분분리재열기 튜브와 같은 열교환 매체가 증기인 경우 열전달 능력을 증가시키기 위해서 핀 튜브를 사용한다. 탄소강 또는 페라이트계열 스테인레스강 등의 자성체 튜브는 고온, 고압에서 강도가 우수하지만 운전 중에 증기 커팅, 침식, 기계적 진동 마모, 응력부식균열 등의 사용 중 결함이 발생하여 발전소 정상운전에 지장을 초래할 수 있기 때문에 전열관의 건전성 평가를 위한 주기적인 비파괴검사의 수행이 필요하다. 하지만 자성체 열교환기 튜브는 투자율이 높은 전기적 특성으로 인하여 기존의 와전류검사기술로는 비파괴검사가 어렵기 때문에 원격장검사기술을 적용해야 한다. 따라서 본 연구에서는 원자력발전소 습분분리재열기세관의 현장적용에 필요한 검사기술을 개발하기 위해서 원격장탐촉자, 인공결함 시험편 및 탐촉자 구동장치를 설계하였으며, 이를 활용하여 발전소 현장 검사에 적용하였다.
중형 차량용 에어컨에 사용되는 스크롤 압축기는 토크변동이 적고 에너지 효율이 높으며, 소음이 적어 적용이 확대되어 가고 있다. 또한 경량화에 따라 압축기를 구성하는 주요부품이 스틸에서 알루미늄으로 변경하는 등 소재에 대한 연구가 활발히 이루어지고 있다. 또한 스크롤 압축기는 고정 스크롤과 선회 스크롤의 인벌루트 랩의 가공 정밀도가 $10{\mu}m$ 이하로 정밀도가 높은 전용장비와 전용 툴은 물론 숙련된 가공기술이 요구되므로 가공 품질을 확인하기 위하여 표면조도와 윤곽도를 측정하였으며, 알루미늄을 모재로하여 양극 산화 처리하여 사용되고 있는 선회스크롤의 경도를 향상시키기 위한 방법의 일환으로 봉공처리를 수행에 따른 특성들을 살펴보았다. 알루미늄 소재는 Al-Mg-Cu계 합금으로 미량의 Ni, Fe, Zn 이 부가된 것으로 나타났으며, 표면조도는 $3{\mu}m$이하로 가공 정밀도 기준 $10{\mu}m$를 만족하였다. 또한 양극산화 후 나노다이아몬드, CNT로 봉공처리 한 경우 경도는 450 이상으로 수봉공처리의 경우 보다 50% 이상 경도가 향상됨을 알 수 있었으며, 봉공재로 사용하기 위한 소재로서 탄소나노튜브나 나노다이아몬드는 큰 차이를 보이지 않았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.