• Title/Summary/Keyword: 합금

Search Result 8,204, Processing Time 0.03 seconds

Area Effect on Galvanic Corrosion of Condenser Materials with Titanium Tubes in Nuclear Power Plants (Titanium 전열관을 사용하는 원전 복수기 재료의 Galvanic Corrosion에 미치는 면적의 영향)

  • Hwang, Seong-Sik;Kim, Joung-Soo;Kim, Uh-Chul
    • Nuclear Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.507-514
    • /
    • 1993
  • Titanium tubes have recently been used in condensers of nuclear power plants since titanium has very good corrosion resistance to seawater. However, when it is connected to Cu alloys as tube sheet materials and these Cu alloys are connected to carbon steels as water box materials, it makes significant galvanic corrosion on connected materials. It is expected from electrochemical tests that the corrosion rate of carbon steel will increase when it is galvanically coupled with Ti or Cu in sea water and the corrosion rate of Cu will increase when it is coupled with Ti, if this couple is exposed to sea water for a long time. It is also expected that the surface area ratios, R$_1$(surface area of carbon steel/surface area of Ti) and R$_2$(surface area of carbon steel/surface area of Cu) are very important for the galvanic corrosion of carbon steel and that these should not be kept to low values in order to minimize the galvanic corrosion on the carbon steel of the water box. Immersed galvanic corrosion tests show that the corrosion rate of carbon steel is 4.4 mpy when the ratio of surface area of Fe/ surface area of Al Brass is 1 while it is 570 mpy when this ratio is 10$^{-2}$ . The galvanic corrosion rate of this carbon steel is increased from 4.4 mpy to 13 mpy at this area ratio, 1, when this connected galvanic specimen is galvanically coupled with a Ti tube. This can be rationalized by the combined effects of R$_1$ and R$_2$ on the polarization curve.

  • PDF

Thermoelectric Properties and Crystallization of $(Bi1-xSbx)_2Te_3 $ Thin Films Prepared by Magenetron Sputtering Process (마그네트론 스퍼터링법으로 제조한 $(Bi1-xSbx)_2Te_3 $박막의 결정성과 열전특성)

  • 연대중;오태성
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.62-62
    • /
    • 2000
  • 비접촉식 온도센서는 물체에서 방출하는 적외선 등의 복사신호를 열에너지로 전환하고 이를 다시 전기신호로 2차 에너지 변환하여 온도를 감지하는 센서로 인체 검지를 응용한 다양한 상품 및 교통, 방재, 빌딩 시스템 등의 분야에 널리 응용되고 있다. 비접촉식 적외선 센서는 열에너지를 전기에너지로 변환하는 방법에 따라 양자형과 열형으로 구분되며, 이중 양자형은 광전도나 광기전력 효과 등을 이용하여 감도 및 응답성이 우수하다는 장점을 지니고 있지만, 소자부를 80K 이하 온도로 유지시키는 냉각을 필요로 하므로 대형 제작이 불가피하고 그 용도가 제한적이다. 열형은 냉각이 필요 없고 소형으로 제작가능한 장점을 지니고 있어 써모 파일이나 초전체를 이용한 번용 센서가 보급되고 있다. 그러나 써모파일의 경우 출력되는 전기 신호가 미약하여 감도 및 응답성을 향상하기 위해 구조가 복잡하고, 특히 모터초퍼나 저항을 전압으로 변환시키는 전력기 등이 필요로 하는 단점을 지니고 있다. 따라서 이러한 문제점을 보완하기 위해 열전재료 박막을 이용한 적외선 센서를 개발하려는 노력이 진행중에 있다. 열전박막을 이용한 적외선 센서는 열전재료의 Seebeck 현상을 이용하여 열에너지에서 전기에너지의 변환이 자가발전으로 이루어져 offset과 외부 바이어스를 필요로 하지 않는다. 또한 작은 온도 변화에도 그 감도와 응답성이 높고, 출력신호가 커서 증폭기 등이 불필요한 장점을 지니고 있다. 특히 초전형 센서가 상온에서도 기판에 대한 열 확산을 제어해야 하는 문제점을 갖는 반면, 열전박막형 적외선 센서는 고온에서도 안정된 출력 신호를 얻을 수 있어 그 활용 온도 범위가 크게 확대될 것으로 기대된다. 본 실험에서는 우수한 열전특성을 갖는 (Bi1-xSbx)2Te3 박막을 얻기 위해 열팽창계수가 작고 알칼리 원소가 0.3% 이하로 포함되어 있는 corning glass(# 7059)를 기판으로 사용하였다. 또한 최적의 열전특성을 나타내는 조성을 실험적으로 구하기 위해 (Bi0.2Sbx)2Te3 조성의 합금 타? 위에 Bi2Te3 및 Sb2Te3 chip을 올려놓고 그 면적을 변화시켜 다양한 조성의 열전박막을 증착하였다. 열전박막의 증착시 산화와 오염에 의한 열전특성 변화를 최소화하기 위해 초기진공도를 1$\times$10-6 Torr로 하였으며, Ar 가스를 흘려주어 2$\times$102 Torr 의 증착진공도를 유지하였다. 열전박막을 증착하기 전에 기판을 10분간 200W의 출력으로 RF 처리하였으며, 30$0^{\circ}C$에서 33 /sec의 속도로 (Bi1-xSbx)2Te3 박막을 증착하였다. 이와 같이 제조된 (Bi1-xSbx)2Te3 박막의 미세구조를 SEM으로 관찰하고 EDS로 조성을 분석하였으며, XRD를 이용하여 결정성을 관찰하였다. 또한 (Bi1-xSbx)2Te3 박막의 Seebeeck 계수 및 전기비저항을 측정하고 증착된 박막조성, 결정상, 미세구조와 열전특성간의 상관관계를 고찰하였다.

  • PDF

Mechanism of Crack Formation in Pulse Nd YAG Laser Spot Welding of Al Alloys (Al합금 펄스 Nd:YAG 레이저 점 용접부의 균열 발생기구)

  • Ha, Yong Su;Jo, Chang Hyeon;Gang, Jeong Yun;Kim, Jong Do;Park, Hwa Sun
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.213-213
    • /
    • 2000
  • This study was performed to investigate types and formation mechanism of cracks in two Al alloy welds, A5083 and A7NO1 spot-welded by pulse Nd: YAG laser, using SEM, EPMA and Micro-XRD. In the weld zone, three types of crack were observed: center line crack($C_{C}$), diagonal crack($C_{D}$), and U shape crack($C_{U}$). Also, HAZ crack($C_{H}$), was observed in the HAZ region, furthermore, mixing crack($C_{M}$), consisting of diagonal crack and HAZ crack was observed.White film was formed at the hot crack region in the fractured surface after it was immersed to 10%NaOH water. In the case of A5083 alloy, white films in C crack and $C_D crack region were composed of low melting phases, Fe₂Si$Al_8$ and eutectic phases, Mg₂Al₃ and Mg₂Si. Such films observed near HAZ crack were also consist of eutectic Mg₂Al₃. In the case of A7N01 alloy, eutectic phases of CuAl₂, $Mg_{32}$ (Al,Zn) ₃, MgZn₂, Al₂CuMg and Mg₂Si were observed in the whitely etched films near $C_{C}$ crack and $C_{D}$ crack regions. The formation of liquid films was due to the segregation of Mg, Si, Fe in the case of A5083 alloy and Zn, Mg, Cu, Si in the case of A7N01 aooly, respectively.The $C_{D}$ and $C_{C}$ cracks were regarded as a result of the occurrence of tensile strain during the welding process. The formation of $C_{M}$ crack is likely to be due to the presence of liquid film at the grain boundary near the fusion line in the base metal as well as in the weld fusion zone during solidification. The $C_{U}$ crack is considered a result of the collapsed keyhole through incomplete closure during rapid solidification. (Received October 7, 1999)

Influence of Welding Parameters on Macrostructure and Mechanical Properties of Friction-Stir-Spot-Welded 5454-O Aluminum Alloy Sheets (마찰교반점접합한 5454-O 알루미늄합금 판재의 접합부 거시조직 및 기계적 특성에 미치는 접합인자의 영향)

  • Choi, Won-Ho;Kwon, Yong-Jai;Yoon, Sung-Ook;Kang, Myoung-Soo;Lim, Chang-Yong;Seo, Jong-Dock;Hong, Sung-Tae;Park, Dong-Hwan;Lee, Kwang-Hak
    • Journal of Welding and Joining
    • /
    • v.29 no.6
    • /
    • pp.56-64
    • /
    • 2011
  • Friction stir spot welding between 5454 aluminum alloy sheets with the different thicknesses of 1.4 and 1.0 mm was performed. In the welding process, the tool for welding was rotated ranging from 500 to 2500, and plunged to the depth of 1.8 mm under a constant tool plunge speed of 100 mm/min. And then, the rotating tool was maintained at the plunge depth during the dwell time ranging from 0 to 7 sec. The pull-out speed of the rotating tool was 100 mm/min. The increase of tool rotation speed resulted in the change of the macrostructure of friction-stir-spot-welded zone, especially the geometry of welding interface. The results of the tensile shear test showed that the total displacement and toughness of the welds were increased with the increase of the tool rotation speed, although the maximum tensile shear load was decreased. However, the change in the dwell time at the plunge depth of the tool did not produce the remarkable variation in the macrostructure and mechanical properties of the welds. In all cases, the average hardness in friction-stir-spot-welded zone was higher than that of the base metal zone. By the friction stir spot welding technique, the welds with the excellent mechanical properties than the mechanically-clinched joints could be obtained.

Thermal Recovery Behaviors of Neutron Irradiated Mn-Mo-Ni Low Alloy Steel (중성자에 조사된 Mn-Mo-Ni 저합금강의 열처리 회복거동)

  • Jang, Gi-Ok;Ji, Se-Hwan;Sim, Cheol-Mu;Park, Seung-Sik;Kim, Jong-O
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.327-332
    • /
    • 1999
  • The recovery activation energy, the order of reaction and the recovery rate constant were detemined by isochronal and isothermal annealing treatment to investigate the recovery behaviors of neutron irradiated Mn-Mo-Ni low alloy steels$(fluence: 2.3\times10^{19}ncm^{-2}, 553K, E\geq1.0 MeV)$. Vickers microhardness tests were conducted to trace the recovery behavior after heat treatments. The results were analyzed in terms of recovery stages, behavior of responsible defects and recovery kinetics. It was shown that recovery occurred through two annealing stages(stage I : 703-753K, stage n : 813-873K) with re$\infty$very activation energies of 2.5 eV and 2.93 eV for each stage I and n, respectively. From the comparison of unirradiated and irradiated isochronal anneal curves, a radiation anneal hardening(RAH) peak was identified at around 813K. Most of recovery have occurred during about 120 min irrespective of isothermal annealing temperatures of 743K and 833K. Recovery rate constants were determined to be $3.4\times10^{-4}min^{-1} and 7.1\times10^{-4}min^{-1}$ for stage I and II, respectively. The order of reaction was about 2 for both recovery stages. Comparing the obtained data with those of previously reported results on neutron irradiated Mn- Mo- Ni steels, the thermal recovery be­havior of the present material seems to occur by the dissociation of point defect clusters formed during irradiation, and by the recombination process of self-interstitials and vacancies from dissociated vacancy clusters.

  • PDF

The Effect of Cold-rolling on Microstructure and Transformation Behavior of Cu-Zn-Al shape Memory Alloy (냉간가공에 의한 CuZnAl계 현상기억합급의 결정립미세화와 특성평가)

  • Lee, Sang-Bong;Park, No-Jin
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.322-326
    • /
    • 1999
  • In this study, cold-rolling and appropriate annealing was adopted for the grain refining of Cu-26.65Zn-4. 05Al-0.31Ti(wt%) shape memory alloy. For the cold deformation of this alloy the ducti1e $\alpha$-phase must be contained. After heat treatment at $550^{\circ}C$ the $(\alpha+$\beta)$-dual phase with 40vol.% $\alpha$-phase was obtained which could be rolled at room temperature. This alloy was cold rolled into a final thickness of 1.0mm with total reduction degrees of 70% and 90%. The rolled sheets were betanized at $800^{\circ}C$ for various times, then quenched into ice water. The grain size of co]d rolled samples were $60~80\mu\textrm{m}$ which is much smaller comparing with the hot-rolled samples. And the 90% rolled sample showed smaller grain size than the case of the 70% rolled one. The small grain size had influence on the phase transformation temperatures and stabilization of the austenitic phases.

  • PDF

Control of Crowning Using Residual Stress induced by the Difference of Tehermal Expansion Between Ceramic and Carbon Steel in Ceramic Cam Follower (열팽창계수차에 기인된 잔류응력을 이용한 세라믹 캠 팔로우어의 크라우닝 제어)

  • Choe, Yeong-Min;Lee, Jae-Do;No, Gwang-Su
    • Korean Journal of Materials Research
    • /
    • v.10 no.10
    • /
    • pp.703-708
    • /
    • 2000
  • As the engine design changes to get high efficiency and performance of commercial diesel engine, surface w wear of the earn follower becomes an important issue as applied load increasing at the contact face between cam follower and cam. We developed the ceramic cam follower made of sili$\infty$n nitride ceramic which was more wear resistant than the cast iron or sintered metal cam follower. Ceramic cam follower was made by direct brazing of thin ceramic disk to steel body using an active brazing alloy without the interlayer. In-situ crowning(R), resulted from the difference of thermal expansion coefficient between ceramic and carbon steel after direct brazing without any stress-relieving inter]ayer, could be controlled. When a earbon steel was heated above $A_{c1}$ point and then c$\infty$led, the expansion curve represented a hysteresis. Appropriate crowning was achieved below the $A_{c1}$ point(about $723^{\circ}C$) and crowning increased with brazing temperature exponentially above the $A_{c1}$ point. Optimum brazing temperature range was from 700 to $720^{\circ}C$. We developed successfully the ceramic cam follower having appropriate crowning and being inexpensive. Also we could successfully control the crowning of ceramic earn follower by hysteresis behavior of thermal expansion of earbon steel during direct brazing process.

  • PDF

Formation of Thin $CoSi_2$by Layer Inversion of Co/Nb bi-layer (Co/Nb 이중층 구조의 막역전을 이용한 박막 $CoSi_2$의 형성)

  • Lee, Jong-Mu;Gwon, Yeong-Jae;Lee, Byeong-Uk;Kim, Yeong-Uk;Lee, Su-Cheon
    • Korean Journal of Materials Research
    • /
    • v.6 no.8
    • /
    • pp.779-785
    • /
    • 1996
  • Thin $700^{\circ}C$films were formed through layer inversion of Co/Nb bilayer during rapid thermal annealing(RTA). The Nb interlayer seems to effectively prevent over-consumption of Si and to control the silicidation reaction by forming Co-Nb intermetallic compounds and removing the native oxide formed on Si substrate which interferes the uniform Co-Si interaction. The final layer structure of the Co/Nb bilayer after $700^{\circ}C$ RTA was found to be ${Nb}_{2}{O}_{3}$/${Co}_{2}$Si.CoSi/${NbCo}_{x}$/Nb(O, C)/${CoSi}_{2}$/ Si. The layer inversion and the formation of a stable CoSi, phase occurred above $700^{\circ}C$, and the Nb silicides were not found at any annealing temperature. These may be due to the formation of very stable Co-Nb intermetallic compounds and Nb oxides which limit the moving of Co and Si.

  • PDF

Manufacturing of Hybrid Metal Matrix Composites used $Al_2O_3$ Short Fiber and $Al_2O_3$-TiC Composite Powder Synthesized by SHS Process (SHS법에 의해 제조된 $Al_2O_3$-TiC복합분말과 $Al_2O_3$단섬유를 강화재로 사용한 하이브리드 금속기 복합재료의 제조)

  • Kim, Dong-Hyeon;Maeng, Deok-Yeong;Lee, Jong-Hyeon;Won, Chang-Whan
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.315-321
    • /
    • 1999
  • Metal matrix composites have been extensively studied because of their excellent characteristics for structural application. $Al_2O_3$ and SiC have been used as a common reinforcement owing to their good mechanical properties. However the manufacturing cost of these ceramic reinforcement is expensive, so the use of the composites has been restricted to special purposes. In this study, we tested the application possibility as a reinforcement of $Al_2O_3$-TiC powder synthesized by SHS(Self-propagating High-temperature Synthesis) process to Al alloy matrix composite. Also, $Al_2O_3$ short fibers were added with the synthesized powders in order to apply to the Al matrix hybrid composites. Squeeze infiltration casting process was used to make the composite with 25vol% of reinforcement. Microstructure and crystal structure were examined by SEM, OM and XRD, also the mechanical properties were studied by the compressive test and wear test.

  • PDF

Effect of Fe on the High Temperature Oxidation of Ti-Al-Fe Alloys (Ti-Al-Fe계 합금의 고온산화거동에 미치는 Fe의 영향)

  • Yoon, Jang-Won;Hyun, Yong-Taek;Kim, Jeoung-Han;Yeom, Jong-Taek;Yoon, Seog-Young
    • Korean Journal of Materials Research
    • /
    • v.21 no.7
    • /
    • pp.357-363
    • /
    • 2011
  • In this paper, high temperature oxidation behavior of newly developed alloys, Ti-6Al-4Fe and Ti-6Al-1Fe, is examined. To understand the effect of Fe on the air oxidation behavior of the Ti-Al-Fe alloy system, thermal oxidation tests are carried out at $700^{\circ}C$ and $800^{\circ}C$ for 96 hours. Ti-6Al-4V alloy is also prepared and tested under the same conditions for comparison with the developed alloys. The oxidation resistance of the Ti-Al-Fe alloy system is superior to that of Ti-6Al-4V alloy. Ti-6Al-4V shows the worst oxidation resistance for all test conditions. This is not a result of the addition of Fe, but rather it is due to the elimination of V, which has deleterious effects on high temperature oxidation. The oxidation of the Ti-Al-Fe alloy system follows the parabolic rate law. At $700^{\circ}C$, Fe addition does not have a noticeable influence on the amount of weight gain of all specimens. However, at $800^{\circ}C$, Ti-6Al-4Fe alloy shows remarkable degradation compared to Ti-6Al-1Fe and Ti-6Al. It is discovered that the formation of $Al_2O_3$, a diffusion resistance layer, is remarkably hindered by a relative decrease of the ${\alpha}$ volume fraction. This is because Fe addition increases the volume fraction of ${\beta}$ phase within the Ti-6Al-xFe alloy system. Activities of Al, Ti, and Fe with respect to the formation of oxide layers are calculated and analyzed to explore the oxidation mechanism.