• Title/Summary/Keyword: 합금응고

Search Result 333, Processing Time 0.024 seconds

고크롬합금주철의 조직과 마모

  • 김철희
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1994.06b
    • /
    • pp.30-34
    • /
    • 1994
  • 최근 기계요소이 설계에 있어 고부하화 및 고효율화에 대한 요구가 가일층 증가되면서, 이에 따른 마찰 습동재가 감동해야 하는 조건들도 더욱 가혹해져가고 있다. 본 연구에서는 합금주철의 조직중에 응고되어있는 경질탄화물의 기하학적 형상과 메트릭스가 윤활하에서의 미끄럼마모에 미치는 영향을 조사하였다.

  • PDF

Effect of Cu content on Hot Tearing Susceptibility in Al-Si-Cu Aluminum Casting Alloy (Al-Si-Cu 알루미늄 주조 합금의 열간 균열 민감성에 미치는 Cu 함량의 영향)

  • Oh, Seung-Hwan;Munkhdelger, Chinbat;Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.41 no.5
    • /
    • pp.419-433
    • /
    • 2021
  • Al-Si-Cu alloys benefit from the addition of copper for better hardness and strength through precipitation hardening, which results in remarkably strong alloys. However, the addition of copper expands the solidification range of Al-Si-Cu alloys, and due to this, these alloys become more prone to hot tearing, which is one of the most common and serious fracture phenomena encountered during solidification. The conventional evaluation method of the hot tearing properties of an alloy is a relative and qualitative analysis approach that does not provide quantitative data about this phenomenon. In the present study, the mold itself part of a device developed in Instone et al. was partially modified to obtain more reliable quantitative data pertaining to the hot tearing properties of an Al-Si-Cu casting alloy. To assess the influence of Cu element, four levels of Cu contents were tested (0.5, 1.0, 3.0, and 5.0 wt.%) in the Al-Si-Cu system alloy and the hot tearing properties were evaluated in each case. As the Cu content was increased, the hot tearing strength decreased to 2.26, 1.53, 1.18, and 1.04 MPa, respectively. At the moment hot tearing occurred, the corresponding solid fraction and solidification rate decreased at the same temperature due to the increase in the solid-liquid coexistence range as the Cu content increased. The morphology of the fracture surfaces was changed from dendrites to dendrites covered with residual liquid, and CuAl2 phases were observed in the vicinity of hot tearing.