• Title/Summary/Keyword: 함수 주성분 분석

Search Result 97, Processing Time 0.044 seconds

Sleep Disturbance Classification Using PCA and Sleep Stage 2 (주성분 분석과 수면 2기를 이용한 수면 장애 분류)

  • Shin, Dong-Kun
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.4
    • /
    • pp.27-32
    • /
    • 2011
  • This paper presents a methodology for classifying sleep disturbance using electroencephalogram (EEG) signal at sleep stage 2 and principal component analysis. For extracting initial features, fast Fourier transforms(FFT) were carried out to remove some noise from EEG signal at sleep stage 2. In the second phase, we used principal component analysis to reduction from EEG signal that was removed some noise by FFT to 5 features. In the final phase, 5 features were used as inputs of NEWFM to get performance results. The proposed methodology shows that accuracy rate, specificity rate, and sensitivity were all 100%.

INFLUENCE FUNCTIONS IN MULTIPLE CORRESPONDENCE ANALYSIS (다중 대응 분석에서의 영향 함수)

  • Hong Gie Kim
    • The Korean Journal of Applied Statistics
    • /
    • v.7 no.1
    • /
    • pp.69-74
    • /
    • 1994
  • Kim (1992) derived influence functions of rows and columns on the eigenvalues obtained in correspondence analysis (CA) of two-way contingency tables. As in principal component analysis, the eigenvalues are of great importance in CA. The goodness of a two dimensional correspondence plot is determined by the ratio of the sum of the two largest eigenvalues to the sum of all the eigenvalues. By investigating those rows and columns with high influence, a correspondence plot may be improved. In this paper, we extend the influence functions of CA to multiple correspondence analysis (MCA), which is a CA of multi-way contigency tables. An explicit formula of the influence function is given.

  • PDF

Dimensionality Reduced Wave Transmission Function and Neural Networks for Crack Depth Estimation in Concrete Structures (차원 축소된 표면파 투과 함수와 인공신경망을 이용한 콘크리트 구조물의 균열 깊이 평가 기법)

  • Shin, Sung-Woo;Yun, Chung-Bang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.247-253
    • /
    • 2007
  • Determination of crack depth in filed using the self-calibrating surface wane transmission measurement and the cutting frequency in the transmission function (TRF) is very difficult due to variations of the measurement conditions. In this study, it is proposed to use the measured full TRF as a feature for crack depth assessment. A Principal component analysis (PCA) is employed to generate a basis of the measured TRFs for various crack cases. The measured TRFs are represented by their projections onto the most significant principal components. Then artificial neural networks (NNs) using the PCA-compressed TRFs is applied to assess the crack in concrete. Experimental study is carried out for five different crack cases to investigate the effectiveness of the proposed method. Results reveal that the proposed method can be effectively used for the crack depth assessment of concrete structures.

Improvement of MLLR Speaker Adaptation Algorithm to Reduce Over-adaptation Using ICA and PCA (과적응 감소를 위한 주성분 분석 및 독립성분 분석을 이용한 MLLR 화자적응 알고리즘 개선)

  • 김지운;정재호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.539-544
    • /
    • 2003
  • This paper describes how to reduce the effect of an occupation threshold by that the transform of mixture components of HMM parameters is controlled in hierarchical tree structure to prevent from over-adaptation. To reduce correlations between data elements and to remove elements with less variance, we employ PCA (Principal component analysis) and ICA (independent component analysis) that would give as good a representation as possible, and decline the effect of over-adaptation. When we set lower occupation threshold and increase the number of transformation function, ordinary MLLR adaptation algorithm represents lower recognition rate than SI models, whereas the proposed MLLR adaptation algorithm represents the improvement of over 2% for the word recognition rate as compared to performance of SI models.

한국산 참기름의 진위성 판별을 위한 NIR 분석

  • Kim, Yeong-Su
    • Bulletin of Food Technology
    • /
    • v.9 no.4
    • /
    • pp.87-93
    • /
    • 1996
  • NIR(근적외) 분광분석법이 참기름의 원산국 판별에 이용 가능 한지를 알아보기 위하여 32종의 시료에 대하여 NIR 분석을 실시한 후, 그 분광 데이터에 대하여 principal component analysis(주성분 분석)와 canonical variate analysis(정준판별분석)을 실시하였다. 10개의 주성분과 400-2500nm에서 second derivative log(1/R) 데이터를 이용할 경우, 제1 및 제2 정준판별함수는 3개 참기름 그룹(한국산 참깨로 제조한 13종의 참기름 그룹, 외국산 참깨로 제조한 10종의 국산 참기름 그룹 및 미지의 참깨로 제조한 9종의 참기름 그룹)을 판별하는데 가장 효과적이었다. 사용된 canonical variate analysis는 참기름 시료를 100%의 정확도로 그 지리적 출처를 분류하였다. 한편 second derivative log(1/R) spectra상의 파장범위 498-500, 668, 1698-1724, 2242-2256, 2302-2306, 2328 및 2348~2352nm에서 3개 그룹간에 현저한 차이가 발견되었다.

  • PDF

녹차의 원산국 판별을 위한 NIR 분석

  • Kim, Yeong-Su
    • Bulletin of Food Technology
    • /
    • v.10 no.1
    • /
    • pp.94-101
    • /
    • 1997
  • NIR(근적외) 분광분석법이 녹차의 원산국을 판별하는데 이용할 수 있는지를 알아보기 위하여 분쇄한 47종의 한국산 및 일본산 녹차에 대하여 NIR 분석을 실시한 후, 그 분광 데이터에 대하여 principal component analysis(주성분 분석 )와 canonical variate analysis(정준판별분석)을 실시하였다. 15개의 주성분과 1100~2500nm에서의 first derivative log(1/R) 데이터를 이용할 경우, 제1 및 제2 정준판별함수는 한국산 녹차 및 일본산 녹차를 판별하는데 가장 효과적이었다. 사용된 canonical variate analysis는 녹차 시료를 97.87%의 정확도로 그 지리적 출처를 판별하였다. 한편 first derivative log(1/R) spectra상의 파장범위 1674~1686, 1950~1992, 2014~2030및 2118~2158 nm에서 일본산 녹차와 3종의 한국산 녹차 그룹간에 현저한 차이가 발견되었다. 이 차이는 polyphenols, caffeine 및 amino acids와 같은 녹차의 주요성분과 관련되어 있지 않으며 주로 지리적 출처상의 차이에 기인한 것으로 판단되었다.

  • PDF

Design of Digit Recognition System Realized with the Aid of Fuzzy RBFNNs and Incremental-PCA (퍼지 RBFNNs와 증분형 주성분 분석법으로 실현된 숫자 인식 시스템의 설계)

  • Kim, Bong-Youn;Oh, Sung-Kwun;Kim, Jin-Yul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.1
    • /
    • pp.56-63
    • /
    • 2016
  • In this study, we introduce a design of Fuzzy RBFNNs-based digit recognition system using the incremental-PCA in order to recognize the handwritten digits. The Principal Component Analysis (PCA) is a widely-adopted dimensional reduction algorithm, but it needs high computing overhead for feature extraction in case of using high dimensional images or a large amount of training data. To alleviate such problem, the incremental-PCA is proposed for the computationally efficient processing as well as the incremental learning of high dimensional data in the feature extraction stage. The architecture of Fuzzy Radial Basis Function Neural Networks (RBFNN) consists of three functional modules such as condition, conclusion, and inference part. In the condition part, the input space is partitioned with the use of fuzzy clustering realized by means of the Fuzzy C-Means (FCM) algorithm. Also, it is used instead of gaussian function to consider the characteristic of input data. In the conclusion part, connection weights are used as the extended diverse types in polynomial expression such as constant, linear, quadratic and modified quadratic. Experimental results conducted on the benchmarking MNIST handwritten digit database demonstrate the effectiveness and efficiency of the proposed digit recognition system when compared with other studies.

인공 신경망 기법을 이용한 제지공정의 지절 원인 분석

  • 이진희;이학래
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2001.04a
    • /
    • pp.168-168
    • /
    • 2001
  • 제지공정의 지절 현상은 많은 공정 변수들이 복합적으로 작용하여 발생하는 가장 큰 공정 트러블 중의 하나이다. 지절은 생산량 감소 뿐만 아니라 발생 후 공정의 복구 와 정리, 생산재가동 및 공정의 재안정화를 위해 많은 시간과 비용, 그리고 노력이 투 입되어야 하므로 공정의 효율과 생산성을 크게 저하시키는 요인이다. 그러나 지절 현상 의 복잡성 때문에 이에 대해 쉽게 접근하거나 해결하지 못하고 있는 것이 현실이지만 그 필요성은 더욱 더 증대되고 있다. 본 연구에서는 최근 들어 각종 산업분야에서 복잡 한 공정상의 결점 발견 및 진단에 효과적이라고 인정받고 있는 예측 분석기법인 인공 신경망(artificial neural network) 시율레이션과 일반적인 통계기법 중의 하나인 주성분 분석을 이용하여 제지 공정의 지절 현상의 검토 가능성을 타진하였다. 인공신경망이란 인간두뇌에서 일어나는 자극-반응-학습과정을 모사하여 현실세계에 존재하는 다양한 현상들의 업력벡터와 출력상태 간의 비선형 mapping올 컴퓨터 시율 레이션을 통하여 분석하고자 하는 기법으로, 여러 가지 현상들을 학습을 통해서 인식하 는 신경망 내의 신경단위들이 병렬처리에 의해 많은 양의 자료에 대한 추론이나 판단 을 신속하고 정확하게 해주는 특징이 있으며 실시간 패턴인식이나 분류 응용분야에도 매우 매력적으로 이용되고 있는 방법이다. 이러한 인공 신경망 기법 중에서도 본 연구 에서는 퍼셉트론의 한계점을 극복하기 위하여 입력총과 출력층에 한 개 이상의 은닉층 ( (hidden layer)을 사용하여 다층 네트워으로 구성하고, 모든 입력패턴에 대하여 발생하 는 오차함수를 최소화하는 방향으로 연결강도를 조정하는 back propagation 학습 알고 리즘을 사용하였다. 지절의 원인으로 추정 가능한 공정인자들을 변수로 하여 최적의 인 공신경망을 구축하기 위해 학습률과 모멘트 상수의 변화 및 은닉층의 수와 출력층의 뉴런 수를 조절하는 동의 작업을 거쳐 네트워크의 정확도가 높은 인공신경망을 설계하 였다. 또한 이러한 인공신경망과의 비교분석을 위해 동일한 공정 데이터들올 이용하여 보편적으로 사용하는 통계기법 중의 하나인 주성분회귀분석을 실시하였다. 주성분 분석은 여러 개의 반응변수에 대하여 얻어진 다변량 자료의 다차원적인 변 수들을 축소, 요약하는 차원의 단순화와 더불어 서로 상관되어있는 반응변수들 상호간 의 복잡한 구조를 분석하는 기법이다. 본 발표에서는 공정 자료를 활용하여 인공신경망 과 주성분분석을 통해 공정 트러블의 발생에 영향 하는 인자들을 보다 현실적으로 추 정하고, 그 대책을 모색함으로써 이를 최소화할 수 있는 방안을 소개하고자 한다.

  • PDF