• Title/Summary/Keyword: 함수 주성분 분석

검색결과 97건 처리시간 0.605초

계층적 벌점함수를 이용한 주성분분석 (Hierarchically penalized sparse principal component analysis)

  • 강종경;박재신;방성완
    • 응용통계연구
    • /
    • 제30권1호
    • /
    • pp.135-145
    • /
    • 2017
  • 주성분 분석(principal component analysis; PCA)은 서로 상관되어 있는 다변량 자료의 차원을 축소하는 대표적인 기법으로 많은 다변량 분석에서 활용되고 있다. 하지만 주성분은 모든 변수들의 선형결합으로 이루어지므로, 그 결과의 해석이 어렵다는 한계가 있다. sparse PCA(SPCA) 방법은 elastic net 형태의 벌점함수를 이용하여 보다 성긴(sparse) 적재를 가진 수정된 주성분을 만들어주지만, 변수들의 그룹구조를 이용하지 못한다는 한계가 있다. 이에 본 연구에서는 기존 SPCA를 개선하여, 자료가 그룹화되어 있는 경우에 유의한 그룹을 선택함과 동시에 그룹 내 불필요한 변수를 제거할 수 있는 새로운 주성분 분석 방법을 제시하고자 한다. 그룹과 그룹 내 변수 구조를 모형 적합에 이용하기 위하여, sparse 주성분 분석에서의 elastic net 벌점함수 대신에 계층적 벌점함수 형태를 고려하였다. 또한 실제 자료의 분석을 통해 제안 방법의 성능 및 유용성을 입증하였다.

남한지역 정규식생지수의 시공간 변화도 분석 (Analysis of the Spatial and Temporal Variability of NDVI Time Series in South Korea)

  • 김광섭;임태경
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.119-122
    • /
    • 2005
  • 정규식생지수는 일반적으로 식생의 활력도를 나타나는 지표로서 널리 사용되고 있다. 최근에는 정규식생지수가 특정지역의 강우량과 온도의 계절 및 경년변화와 어떤 상관관계를 가지며 기후변화는 식생지수에 어떠한 영향을 미치는지 등에 관한 연구가 활발히 수행되고 있다. 본 연구에서는 1981년부터 2001년까지의 NOAA/AVHRR 영상으로부터 계산된 남한지역 정규식생지수의 주성분 분석을 통해 자료의 공간변화패턴을 분석하고 경험적 직교함수를 이용하여 시간적 변화 양상을 파악하였다. 분석결과 정규식생지수의 공간변화도는 첫 주성분에 의하여 약 $60\%$ 정도 설명되어지며 첫 주성분은 남한지역의 지형 자료 패턴을 따르고 두 번째 주성분은 전체 변화도의 약 $17\%$를 나타내며 강한 남북기울기를 보여주는 것은 계절변화와 상관한 위도변화에 따른 정규식생지수의 변화를 나타낸다. 그리고 소양강댐 및 안동댐 유역의 정규식생지수, 강우량 및 유입량 상관관계 분석 결과 정규식생지수의 계절변화와 경년변화는 강우량의 변화에 그리 민감하지 않은 것으로 나타났다.

  • PDF

주성분 분석법과 선형판별 분석법을 이용한 최적화된 방사형 기저 함수 신경회로망 분류기의 설계 (Design of Optimized Radial Basis Function Neural Networks Classifier with the Aid of Principal Component Analysis and Linear Discriminant Analysis)

  • 김욱동;오성권
    • 한국지능시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.735-740
    • /
    • 2012
  • 본 연구에서는 주성분 분석법 및 선형 판별 분석법을 이용한 다항식 방사형 기저 함수 신경회로망 분류기의 설계 방법론을 소개한다. 주성분 분석법과 선형판별 분석법을 사용하여 주어진 데이터의 정보 손실을 최소화한 특징데이터를 생성하고 이를 다항식 방사형 기저함수 신경회로망의 입력데이터로 사용한다. 방사형 기저 함수 신경회로망의 은닉층은 FCM 클러스터링 알고리즘으로 구성되며 연결가중치는 1차 선형식을 사용하였다. 최적의 분류기 설계를 위해서 최근에 제안된 Artificial Bee Colony(ABC) 최적화 알고리즘을 사용하여 구조 및 파라미터를 동조하였다. ABC 알고리즘을 통해 주성분 분석법과 선형판별 분석법의 고유벡터의 수 및 FCM 클러스터링 알고리즘의 퍼지화 계수등의 파라미터를 동조한다. 제안된 분류기는 대표적인 Machine Learning(ML) 데이터를 사용하여 성능을 평가하며 기존 분류기와 성능을 비교한다.

기온 강수량 자료의 함수적 데이터 분석 (Functional Data Analysis of Temperature and Precipitation Data)

  • 강기훈;안홍세
    • 응용통계연구
    • /
    • 제19권3호
    • /
    • pp.431-445
    • /
    • 2006
  • 본 연구는 함수적 데이터 분석의 몇 가지 이론에 대해 소개하고 분석 기법을 실제 자료에 적용하는 내용을 다루었다. 함수적 데이터 분석의 이론적 내용으로 기저를 이용해 자료를 함수적 데이터로 표현하는 방법, 그리고 함수적 데이터의 변동성을 조사하는 주성분분석, 선형모형 등에 대해 살펴보았다. 그리고 우리나라 기온 데이터와 강수량 데이터를 대상으로 각각 함수적 데이터 분석 기법을 적용해 보았다. 또한, 기온과 강수량 데이터에 대해 함수적 회귀모형을 적합시켜 두 변수간의 함수관계를 살펴보았다.

주성분 분석을 이용한 HRIR 맞춤 기법 (Median HRIR Customization via Principal Components Analysis)

  • 황성목;박영진
    • 한국소음진동공학회논문집
    • /
    • 제17권7호
    • /
    • pp.638-648
    • /
    • 2007
  • CIPIC HRTF database의 주성분 분석(PCA)을 통해 개인의 HRIR이 정규 직교화된 소수의 기저함수들의 선형 결합으로 잘 묘사됨을 알 수 있다. 이 기저함수들은 음원의 고도각, 청취자 마다 달라지는 HRIR의 변화를 표현할 수 있다. 선형결합에 사용되는 기저함수들의 가중치들은 음원의 고도각에 따라 특이한 경향을 지닌다. 또한, 각각의 음원 위치에서 가중치의 표준편차 크기순으로 기저함수의 중요도를 결정할 수 있다. 이 논문에서는 각 음원 위치마다 중요한 3개 기저함수의 가중치를 청취자가 직접 조절하게 함으로써 맞춤형 HRIR을 생성하는 방법을 제안한다. 주관평가 결과, 청취자의 음원 고도각 인지 성능과 음원 앞-뒤 구분 성능이 향상됨을 확인하였다.

선형판별법과 레이디얼 기저함수 신경망 결합에 의한 얼굴인식 (Face Recognition by Combining Linear Discriminant Analysis and Radial Basis Function Network Classifiers)

  • 오병주
    • 한국콘텐츠학회논문지
    • /
    • 제5권6호
    • /
    • pp.41-48
    • /
    • 2005
  • 이 논문은 얼굴인식을 수행하기 위해서 이미 잘 알려진 주성분 분석법과 선형판별 분석법에 레이디얼 기저 함수 신경망을 결합한 인식 알고리즘을 제시하였다. 입력된 원래의 얼굴영상은 주성분분석법을 통하여 차원을 줄인 고유 얼굴 가중치를 산출한다. 이 가중치 벡터를 선형판별 분석법의 입력데이터로 사용하여 선형판별분석의 변환행렬을 계산할 때 클래스 내의 분산행렬에서 특이점이 발생하지 않도록 하면서 특징벡터를 산출하여 인식을 수행하였다. 두 번째 시도에서는 선형판별분석법에 의해 생성된 특징벡터를 레이디얼 기저 함수 신경망에 입력하여 학습하고 얼굴인식을 수행하였다. ORL DB의 얼굴영상에 대해 실험한 결과 93.5%의 인식률을 얻을 수 있었다.

  • PDF

비선형 특징 추출을 위한 온라인 비선형 주성분분석 기법 (On-line Nonlinear Principal Component Analysis for Nonlinear Feature Extraction)

  • 김병주;심주용;황창하;김일곤
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권3호
    • /
    • pp.361-368
    • /
    • 2004
  • 본 논문에서는 온라인 학습 자료의 비선형 특징(feature) 추출을 위한 새로운 온라인 비선형 주성분분석(OL-NPCA : On-line Nonlinear Principal Component Analysis) 기법을 제안한다. 비선형 특징 추출을 위한 대표적인 방법으로 커널 주성분방법(Kernel PCA)이 사용되고 있는데 기존의 커널 주성분 분석 방법은 다음과 같은 단점이 있다. 첫째 커널 주성분 분석 방법을 N 개의 학습 자료에 적용할 때 N${\times}$N크기의 커널 행렬의 저장 및 고유벡터를 계산하여야 하는데, N의 크기가 큰 경우에는 수행에 문제가 된다. 두 번째 문제는 새로운 학습 자료의 추가에 의한 고유공간을 새로 계산해야 하는 단점이 있다. OL-NPCA는 이러한 문제점들을 점진적인 고유공간 갱신 기법과 특징 사상 함수에 의해 해결하였다. Toy 데이타와 대용량 데이타에 대한 실험을 통해 OL-NPCA는 다음과 같은 장점을 나타낸다. 첫째 메모리 요구량에 있어 기존의 커널 주성분분석 방법에 비해 상당히 효율적이다. 두 번째 수행 성능에 있어 커널 주성분 분석과 유사한 성능을 나타내었다. 또한 제안된 OL-NPCA 방법은 재학습에 의해 쉽게 성능이 항상 되는 장점을 가지고 있다.

FPCA를 통한 고빈도 시계열 변동성 분석: R함수 소개와 응용 (FPCA for volatility from high-frequency time series via R-function)

  • 윤재은;김종민;황선영
    • 응용통계연구
    • /
    • 제33권6호
    • /
    • pp.805-812
    • /
    • 2020
  • 본 논문은 최근 금융시계열 분야에서 자주 등장하는 고빈도 시계열 변동성 분석을 다루고 있다. 고빈도 시계열 변동성 분석을 위해 차원 축소를 목적으로 하는 함수형 주성분분석을 적용하였으며 이를 수행하는 R의 두 함수를 비교하고 있다. 응용으로서, KOSPI 고빈도 자료에 적용해 보았다.

주성분 분석법을 이용한 머리전달함수 모형화 기법의 성능 비교 (Comparison of Head-related Transfer Function Models Based on Principal Components Analysis)

  • 황성목;박영진;박윤식
    • 한국소음진동공학회논문집
    • /
    • 제18권6호
    • /
    • pp.642-653
    • /
    • 2008
  • 이 연구는 중앙면 상에서 주성분 분석법을 이용하여 시간 및 주파수 영역에서 머리전달함수의 모형화 기법들을 다룬다. 시간영역의 머리전달함수, 복소수 값의 머리전달함수, 확장된 머리전달함수, 로그 크기의 머리전달함수에 기반하여 각각 주성분 분석법을 수행하여 얻은 네 가지 머리전달함수 모형들에 대해서 최소자승오차 관점에서 모형화 성능을 비교하고, 모형들간의 이론적인 관계를 살펴보는 것이 이 연구의 목적이다. 모형화에 사용되는 기저함수의 수가 동일하다면, 시간영역에서의 머리전달함수 혹은 확장된 머리전달함수에 기반한 모형이 복소수 값의 머리전달함수에 기반한 모형보다 최소자승오차 관점에서 더 효율적인 모형화 성능을 지닌다. 시간영역에서의 머리전달함수에 기반한 모형과 확장된 머리전달함수에 기반한 모형은 이론적으로 동일한 모형이며 서로 푸리에 변환 관계가 있다. 로그 크기의 머리전달함수에 기반한 모형은 다른 모형들과 모형화 성능 및 이론적인 관계를 비교할 수가 없는데, 이는 로그 크기의 머리전달함수에 기반한 모형은 머리전달함수의 크기 정보만을 로그 크기로 다루는 반면에 다른 모형들은 선형 크기로 머리전달함수의 크기와 위상정보를 모두 다루기 때문이다.

주성분 회귀모형을 이용한 과학기술 지식생산함수 추정 (Estimation of S&T Knowledge Production Function Using Principal Component Regression Model)

  • 박수동;성웅현
    • 기술혁신학회지
    • /
    • 제13권2호
    • /
    • pp.231-251
    • /
    • 2010
  • 과학기술 R&D 활동의 대표적 성과인 SCI 논문과 특허의 생산에 영향을 미치는 요인은 연구비, 연구원수, 지식스톡(R&D스톡, 논문스톡, 특허스톡 등), 연구환경, 개방화 정도, 인적자본, GDP 등 다양하다. 일반적인 회귀모형을 이용하여 논문 또는 특허의 생산에 영향을 미치는 요인을 추정하면 생산요인들 간에 다중공선성 문제가 발생하여 추정의 오류가 발생한다. 본 논문에서는 과학기술 지식생산에 영향을 미치는 요인들 간의 다중공선성 문제를 해결하기 위해 주성분 회귀모형을 이용하였다. SCI 논문을 산출로 가정한 과학생산성과와 특허를 산출로 가정한 기술생산성과에 영향을 미치는 요인을 회귀모형과 주성분 회귀모형을 이용하여 3가지 사례를 대상으로 비교 분석하였다. 일반 회귀모형을 이용하여 SCI 논문과 특허의 생산에 영향을 미치는 요인들을 분석한 결과, 요인들간에 다중공선성이 매우 높게 나타났고, 그 결과 회귀계수와 추정과 검정에 오류가 발생되었다. 반면 주성분 회귀모형을 이용하여 분석한 결과 다중공선성문제가 해결되어, 개별 생산요인에 대한 효과를 적절하게 추정할 수 있었다. 본 논문에서 제안한 주성분 회귀모형을 이용한 과학기술 지식생산함수 추정방법은 다중공선성이 강한 소수의 생산요소를 포함한 회귀분석에서 유용하게 적용될 수 있을 것이다.

  • PDF