• Title/Summary/Keyword: 함수 근사

Search Result 905, Processing Time 0.024 seconds

Simple Formulae for Buckling and Ultimate Strength Estimation of Plates Subjected to Water Pressure and Uniaxial Compression (수압(水壓)과 압축력(壓縮力)을 받는 평판(平板)의 좌굴(挫屈) 및 최종강도(最終强度) 추정식(推定式))

  • Jeom-K.,Paik;Chang-Y.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.4
    • /
    • pp.69-80
    • /
    • 1988
  • This paper proposes simple formulae for buckling and ultimate strength estimation of plates subjected to water pressure and uniaxial compression. For the construction of a formula for elastic buckling strength estimation, parametric study for actual ship plates with varying aspect ratios and the magnitude of water pressure is carried out by means of principle of minimum potential energy. Based on the results by parametric study, a new formula is approximately expressed as a continuous function of loads and aspect ratio. On the other hand, in order to get a formula for ultimate strength estimation, in-plane stress distribution of plates is investigated through large deflection analysis and total in-plane stresses are expressed as an explicit form. By applying Mises's plasticity condition, ultimate strength criterion is then derives. In the case of plates under relatively small water pressure, the results by the proposed formulae are in good agreement compared with those by other methods and experiment. But present formula overestimates the ultimate strength in the range of large water pressure. However, actual ship plates are subjected to relatively small water pressure except for the impact load due to slamming etc.. Therefore, it is considered that present formulae can be applied for the practical use.

  • PDF

Development of Intelligent ATP System Using Genetic Algorithm (유전 알고리듬을 적용한 지능형 ATP 시스템 개발)

  • Kim, Tai-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.131-145
    • /
    • 2010
  • The framework for making a coordinated decision for large-scale facilities has become an important issue in supply chain(SC) management research. The competitive business environment requires companies to continuously search for the ways to achieve high efficiency and lower operational costs. In the areas of production/distribution planning, many researchers and practitioners have developedand evaluated the deterministic models to coordinate important and interrelated logistic decisions such as capacity management, inventory allocation, and vehicle routing. They initially have investigated the various process of SC separately and later become more interested in such problems encompassing the whole SC system. The accurate quotation of ATP(Available-To-Promise) plays a very important role in enhancing customer satisfaction and fill rate maximization. The complexity for intelligent manufacturing system, which includes all the linkages among procurement, production, and distribution, makes the accurate quotation of ATP be a quite difficult job. In addition to, many researchers assumed ATP model with integer time. However, in industry practices, integer times are very rare and the model developed using integer times is therefore approximating the real system. Various alternative models for an ATP system with time lags have been developed and evaluated. In most cases, these models have assumed that the time lags are integer multiples of a unit time grid. However, integer time lags are very rare in practices, and therefore models developed using integer time lags only approximate real systems. The differences occurring by this approximation frequently result in significant accuracy degradations. To introduce the ATP model with time lags, we first introduce the dynamic production function. Hackman and Leachman's dynamic production function in initiated research directly related to the topic of this paper. They propose a modeling framework for a system with non-integer time lags and show how to apply the framework to a variety of systems including continues time series, manufacturing resource planning and critical path method. Their formulation requires no additional variables or constraints and is capable of representing real world systems more accurately. Previously, to cope with non-integer time lags, they usually model a concerned system either by rounding lags to the nearest integers or by subdividing the time grid to make the lags become integer multiples of the grid. But each approach has a critical weakness: the first approach underestimates, potentially leading to infeasibilities or overestimates lead times, potentially resulting in excessive work-inprocesses. The second approach drastically inflates the problem size. We consider an optimized ATP system with non-integer time lag in supply chain management. We focus on a worldwide headquarter, distribution centers, and manufacturing facilities are globally networked. We develop a mixed integer programming(MIP) model for ATP process, which has the definition of required data flow. The illustrative ATP module shows the proposed system is largely affected inSCM. The system we are concerned is composed of a multiple production facility with multiple products, multiple distribution centers and multiple customers. For the system, we consider an ATP scheduling and capacity allocationproblem. In this study, we proposed the model for the ATP system in SCM using the dynamic production function considering the non-integer time lags. The model is developed under the framework suitable for the non-integer lags and, therefore, is more accurate than the models we usually encounter. We developed intelligent ATP System for this model using genetic algorithm. We focus on a capacitated production planning and capacity allocation problem, develop a mixed integer programming model, and propose an efficient heuristic procedure using an evolutionary system to solve it efficiently. This method makes it possible for the population to reach the approximate solution easily. Moreover, we designed and utilized a representation scheme that allows the proposed models to represent real variables. The proposed regeneration procedures, which evaluate each infeasible chromosome, makes the solutions converge to the optimum quickly.

Application of Off-axis Correction Method for EPID Based IMRT QA (EPID를 사용한 세기조절방사선치료의 정도관리에 있어 축이탈 보정(Off-axis Correction)의 적용)

  • Cho, Ilsung;Kwark, Jungwon;Park, Sung Ho;Ahn, Seung Do;Jeong, Dong Hyeok;Cho, Byungchul
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.317-325
    • /
    • 2012
  • The Varian PORTALVISION (Varian Medical Systems, US) shows significant overresponses as the off-center distance increases compared to the predicted dose. In order to correct the dose discrepancy, the off-axis correction is applied to VARIAN iX linear accelerators. The portal dose for $38{\times}28cm^2$ open field is acquired for 6 MV, 15 MV photon beams and also are predicted by PDIP algorithm under the same condition of the portal dose acquisition. The off-axis correction is applied by modifying the $40{\times}40cm^2$ diagonal beam profile data which is used for the beam profile calibration. The ratios between predicted dose and measured dose is modeled as a function of off-axis distance with the $4^{th}$ polynomial and is applied to the $40{\times}40cm^2$ diagonal beam profile data as the weight to correct measured dose by EPID detector. The discrepancy between measured dose and predicted dose is reduced from $4.17{\pm}2.76$ CU to $0.18{\pm}0.8$ CU for 6 MV photon beam and from $3.23{\pm}2.59$ CU to $0.04{\pm}0.85$ CU for 15 MV photon beam. The passing rate of gamma analysis for the pyramid fluence patten with the 4%, 4 mm criteria is improved from 98.7% to 99.1% for 6 MV photon beam, from 99.8% to 99.9% for 15 MV photon beam. IMRT QA is also performed for randomly selected Head and Neck and Prostate IMRT plans after applying the off-axis correction. The gamma passing rare is improved by 3% on average, for Head and Neck cases: $94.7{\pm}3.2%$ to $98.2{\pm}1.4%$, for Prostate cases: $95.5{\pm}2.6%$, $98.4{\pm}1.8%$. The gamma analysis criteria is 3%, 3 mm with 10% threshold. It is considered that the off-axis correction might be an effective and easily adaptable means for correcting the discrepancy between measured dose and predicted dose for IMRT QA using EPID in clinic.

Some Characteristics of Teflon-Thermoluminescent Dosimeters (테프론 열형광선량계(熱螢光線量計)의 특성(特性))

  • Lee, Soo-Yong
    • Journal of Radiation Protection and Research
    • /
    • v.7 no.1
    • /
    • pp.23-33
    • /
    • 1982
  • The characteristic thermoluminescence responses of Teflon thermoluminescent dosimeters to radiations have been studied by the variation of radiation qualities as well as the high dose radiations. The change in the sensitivity of TLDs for different radiation qualities were studied through not only the photon energy dependence but also the change of supralinearity on the photon energy dependence, by exposing $^{60}Co$ gamma rays, the effective X-rays of 44keV, 69keV, 108keV, and thermal neutron of 0.04 eV. The results were as the following: The TL response of $T-CaSO_4$: Dy as a function of absorbed dose was linear up to about 5 Gy, and the response beyond 5Gy was supralinear for $^{60}Co$ gamma rays. The supralinearity of T-LiF-7 became noticeably apparent more than that of $T-CaSO_4$:Dy and also the lower the LET of radiation became the higher the supralinear effects were. No supralinearity appeared for the thermal neutron irradiations equivalent to 10Gy of $^{60}Co$ gamma rays. The relative sensitivities (Rs), which depended on the doses of $^{60}Co$ gamma rays to the TLDs of T-LiF-7 and T-$CaSO_4$:Dy could be, respectively, approximated to the following empirical formula fitted by the least square method: $$R_{LiF}=1.021-0.04581\;logD+0.402(logD)^2-0.405(logD)^3,\;\;5{\times}10^3{\geq}D{\geq}1(Gy)$$ $$R_{CaSO_4}=0.976-0.3241\;logD+0.262(logD)^2-0.298(logD)^3,\;5{\times}10^3{\geq}D{\geq}1(Gy)$$.

  • PDF

Estimation and Mapping of Soil Organic Matter using Visible-Near Infrared Spectroscopy (분광학을 이용한 토양 유기물 추정 및 분포도 작성)

  • Choe, Eun-Young;Hong, Suk-Young;Kim, Yi-Hyun;Zhang, Yong-Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.968-974
    • /
    • 2010
  • We assessed the feasibility of discrete wavelet transform (DWT) applied for the spectral processing to enhance the estimation performance quality of soil organic matters using visible-near infrared spectra and mapped their distribution via block Kriging model. Continuum-removal and $1^{st}$ derivative transform as well as Haar and Daubechies DWT were used to enhance spectral variation in terms of soil organic matter contents and those spectra were put into the PLSR (Partial Least Squares Regression) model. Estimation results using raw reflectance and transformed spectra showed similar quality with $R^2$ > 0.6 and RPD> 1.5. These values mean the approximation prediction on soil organic matter contents. The poor performance of estimation using DWT spectra might be caused by coarser approximation of DWT which not enough to express spectral variation based on soil organic matter contents. The distribution maps of soil organic matter were drawn via a spatial information model, Kriging. Organic contents of soil samples made Gaussian distribution centered at around 20 g $kg^{-1}$ and the values in the map were distributed with similar patterns. The estimated organic matter contents had similar distribution to the measured values even though some parts of estimated value map showed slightly higher. If the estimation quality is improved more, estimation model and mapping using spectroscopy may be applied in global soil mapping, soil classification, and remote sensing data analysis as a rapid and cost-effective method.