• Title/Summary/Keyword: 함몰

Search Result 456, Processing Time 0.024 seconds

An investigation on the ground collapse mechanism induced by cracks in a non-pressurized buried pipe through model tests (모형시험을 통한 비압력 지중관거 균열로 인한 지반함몰 메커니즘 연구)

  • Kim, Yong-Key;Nam, Kyu-Tae;Kim, Ho-Jong;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.235-253
    • /
    • 2018
  • Groundwater flow induced by cracks in a buried pipe causes ground loss in the vicinity of it which can lead to underground cavities and sinkhole problems. In this study, the ground collapse mechanism and the failure mode based on an aperture in the pipe located in cohesionless ground were investigated through a series of physical model studies. As the influence parameters, size of the crack, flow velocity in the pipe, groundwater level, ground cover depth and ground composition were adopted in order to examine how each of the parameters affected the behavior of the ground collapse. Influence of every experimental condition was evaluated by the final shape of ground failure (failure mode) and the amount of ground loss. According to the results, the failure mode appeared to be a 'Y' shape which featured a discontinuous change of the angle of erosion when a groundwater level was equal to the height of the ground depth. While in the case of a water table getting higher than the level of ground cover depth, the shape of the failure mode turned to be a 'V' shape that had a constant erosion angle. As the height of the ground depth increased, it was revealed that a mechanism where a vertically collapsed area which consisted of a width proportional to the ground height and a constant length occurred was repeated.

A Study on the Optimization Algorithm for Correlation Analysis of the Underground Utility Structure Density in Urban Areas and Recorded Ground Subsidence (도심지 지중매설물 밀집도와 이력지반함몰의 상관성 분석을 위한 최적화 알고리즘에 관한 연구)

  • Choi, Changho;Kim, Jin-Young;Baek, Sung-Ha;Kang, Jae Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.10
    • /
    • pp.77-87
    • /
    • 2021
  • Several studies have been conducted to analyze, predict, and prevent the risk of ground subsidence occurring in urban areas. Nevertheless, there is insufficient research effort on risk analysis that utilizes the correlation between the density of underground structures (i.e., the spatial quantity of buried objects installed in the ground around the interested area) and the occurrence of ground subsidence. In this paper, a study was conducted to analyze the line density of underground structures using GIS-based spatial information data, and to link this with the recorded ground subsidences. An optimization algorithm was developed to maximize the correlation between the line density of 29 recorded ground subsidences and 6 types of underground structures that occurred between 2010 and 2015 for the analysis area. The concept of normalized line density was also proposed for the analysis. The normalized line density of the analysis area was divided into five grades (Grade 1: lowest, Grade 5: highest). When the optimization algorithm was applied, the case where the normalized line density was Grade 4 or higher at the location of the recorded ground subsidences was about > 80%. It is thought that the density analysis result of underground facilities can be applied to the ground subsidence risk analysis by using the proposed optimization algorithm.

Effects of evanescent modes on three-dimensional depression of seabed (3차원 함몰 지형에서 소멸파 성분의 영향)

  • Jung, Tae-Hwa;Kim, Hyung-Joon;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.12
    • /
    • pp.1125-1133
    • /
    • 2009
  • Evanescent modes which are the other solutions of the Laplace equation for the linear dispersion equation may affect the wave transformation especially when a water depth varies abruptly. In this study, the effects of evanescent modes for a three-dimensional depression of seabed are investigated by using the eigenfunction expansion method. A convergence test is first carried out by changing numbers of domains and evanescent modes. The wave transformation for various depressions of seabed is then calculated under condition that the solution of the eigenfunction expansion method is converged.

Analysis of Reflection Coefficients of Waves Propagating over Various Depression of Topography (다양한 함몰지형 위를 통과하는 파랑의 반사율 해석)

  • Kang, Gyu-Young;Jung, Tae-Hwa;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.11
    • /
    • pp.899-908
    • /
    • 2007
  • In this study, wave reflection due to depression of seabed is calculated by using eigenfunction expansion method. The proper numbers of steps and evanescent modes needed for analysis are suggested by applying the eigenfunction expansion method to bottom topography of which slope or curvature varies. While satisfying shallow or intermediate water depth condition, the optimal figure of depression of seabed is obtained by calculating reflection coefficient for various depressions of seabed. The reflection coefficient with distance between the depression of seabeds is then calculated after arraying the optimal geometry in two and three rows.

DEM Simulation on the Initiation and Development of Road Subsidence (개별요소법을 활용한 도로함몰 발생과 전개거동 예측)

  • Kim, Yeonho;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.7
    • /
    • pp.43-53
    • /
    • 2017
  • Road subsidence, frequently occurring in urban areas, is caused by collapsing of surface layer due to underground cavities followed by a loss of soils. To better understand this phenomenon, the mechanism of cavity formation should be identified firstly. Two kinds of possible subsidence mechanisms were established through previous case studies and the numerical analyses based on Distinct Element Method were conducted for each of these mechanisms. It was confirmed that particle loss and surface settlement can develop differently depending on slit size, void ratio, and particle shape among the various factors influencing the road subsidence. The result demonstrated that the effects of varying cavity diameter and depth could be quantified as a damage chart.

Optimal Geophysical Exploration Performance Method for Common Detection Behind a Sewer (하수관로 배면 공동 탐지를 위한 최적 물리탐사 방법)

  • Kim, Jinyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.8
    • /
    • pp.11-17
    • /
    • 2018
  • Recently, road subsidence has been increasing in urban areas, threatening the safety of citizens. In the lower part of the road, various road facilities such as water supply and drainage pipelines and telecommunication facilities are buried, and the deterioration of the facilities causes the road subsidence. Especially, in the case of old sewer which are attracting attention as a main cause of ground subsidence, the risk of subsidence is calculated indirectly through CCTV exploration. Currently, we are finding cavity through GPR exploration. However, it is difficult to find the sewer back cavity because it is explored from the surface of the road. Thus, the nondestructive cavity exploration techniques was investigated in this study and we confirmed the applicability through experiments on the test-bed. In this study a new quantitative method is proposed to detect the cavity around sewer.

Combustion Characteristics of Double Swirl Coaxial Injector in High Pressure Thrust Chamber (이중와류 분사기를 적용한 고압 모델 연소기의 연소 특성 연구)

  • 서성현;이광진;한영민;김승한;김종규;설우석
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.1
    • /
    • pp.54-60
    • /
    • 2004
  • Experimental study on combustion characteristics of double swirl coaxial injectors has been conducted for the assessment of critical injector design parameters. A reusable, subscale thrust chamber has been fabricated with a water-cooled copper nozzle. Two different configurations of injectors have been tested for the understanding of the effects of recess length on high pressure combustion. Clearly, the recess length drastically affects the combustion efficiency and hydraulic characteristics of an injector. Internal mixing of propellants in an injector with recess number of two increases a combustion efficiency and reveals sound combustion although a pressure drop required for the same amount of mass flow rates increases compared with an injector of recess number of one.

Self-assembled Nanostructures for Broadband Light Absorption Enhancement in Silicon Absorber

  • Gang, Gu-Min;Kim, Gyeong-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.134.1-134.1
    • /
    • 2014
  • 콜로이달 리소그래피는 나노미터 크기의 나노구를 자가조립에 의해 정렬시킴으로써, 파장이하 크기의 주기 구조를 저비용으로 쉽게 구현할 수 있는 패터닝 기법이다. 콜로이달 리소그래피나 소프트 리소그래피와 같이 대면적 패터닝이 가능한 공정을 태양전지를 위한 반사방지 및 광 포획 증대 구조에 적용함으로써, 기존 성능을 크게 향상시켰다. 본 연구에서는, 유한차분 시간영역 수치해석법을 이용하여 반사 방지 및 광 포획 증대 구조에 대한 이론적 검증 및 설계를 진행하였고, 콜로이달 리소그래피 및 반도체 공정을 통해 샘플을 제작하였으며, 제작된 샘플의 성능을 적분구를 겸비한 자외선 가시광 근적외선 영역 분광기를 통해 평가하였다. 반사방지 나노섬을 겸비한 나노 원뿔대 언덕형 굴절률 소자를 구현함으로써, 300나노미터 이하의 구조체를 사용하지 않고도 근자외선 영역을 포함하는 태양광 에너지의 손실을 최소화할 수 있는 광대역 방사방지 구조체를 제시하였다. 나노 원뿔대가 격자상수 이상의 파장에 대한 언덕형 굴절률을 제공하고, 4분의 1파장 나노섬 반사방지막이 격자 상수 이하의 근자외선 태양광을 추가적으로 흡수하여, 근자외선 영역에서의 평균 반사율을 3.8% 수준으로 달성 할 수 있었다. 또한, 낮은 양호계수를 갖는 속삭임 회랑 공진기 어레이를 이용하여, 박막 태양전지에 적합한 유전체 기반 광포획 증대 나노구조를 제시하였다. 나노반구, 나노고깔, 나노구, 함몰형 나노구 어레이 형태를 가지며, 500nm의 주기를 갖는 유전체 표면 텍스쳐드 구조를 초박형 비정질 실리콘 필름(100nm) 위에 제작하여 광대역 광 포획 증대 효과를 실험적으로 평가하였다. 구조들 중 함몰형 나노구 어레이가 결합된 비정질 실리콘 박막이 가장 높은 성능을 보였으며, 구조가 없는 경우 대비 약 67.6%의 가중 흡수율 증가를 나타내었다. 특히, 함몰형 나노구 어레이 구조 중 폴리메틸메타아크릴레이트로 제작된 평판형 함몰층은 나노구 비정질 박막 실리콘 사이의 접착력 및 기계적 강성을 향상시켰을 뿐 아니라, 함몰층 내부로 회절되고 산란된 빛들이 도파모드 효과에 의해 부가적인 광 포획 증대를 가져옴으로써, 가장 높은 광 포획 효과를 얻을 수 있었다. 유전체 기반 나노 구조들은 간단하고 저비용이며, 대면적으로 쉽게 제작할 수 있는 자가 조립 기반 콜로이달 리소그래피 및 소프트 리소그래피 기술을 이용하여 제작되었다.

  • PDF

Extracting the Risk Factor of Ground Excavation Construction and Confidence Analysis using Statistical Test Procedure (지반굴착공사 위험요소 도출 및 통계적 검정 방법을 통한 신뢰성 분석)

  • Kim, Dong-Min;Kim, Woo-Seok;Baek, Yong
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.1
    • /
    • pp.11-17
    • /
    • 2017
  • The case study on ground subsidence was conducted and the cause of ground subsidence was evaluated, main cause were insufficient site exploration, inaccurate strength parameters, defective temporary wall, insufficient reaction for boiling and heaving, excessive excavation and so on. Risk factors during excavation were identified from the cause of ground subsidence and risk factors were site exploration, selecting excavation method, structure analysis, measurement plan, excavation method construction, underground water level change, natural disaster and construction management. The survey of the experts on risk factors identified was conducted to evaluate the importance of risk factors, and confidence analysis was performed to evaluate the significance level between survey result and survey respondent using Chi-square Test.

Model Tests and GIMP (Generalized Interpolation Material Point Method) Simulations of Ground Cave-ins by Strength Reduction due to Saturation (불포화 강도 유실에 의한 지반함몰 현상의 모형 실험 재현 및 일반 보간 재료점법을 활용한 수치적 모사)

  • Lee, Minho;Woo, Sang Inn;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.93-105
    • /
    • 2017
  • This study presents direct shear tests, model tests, and numerical simulations to assess the effect of reduction of soil strength because of saturation during formation of ground cave-in caused by damaged sewer pipe lines. The direct shear test results show that the saturation affects the cohesion of soil significantly although it does not influence the friction angle of soil. To experimentally reproduce ground cave-in, the model tests were performed. As ground cave-ins were accompanied with extreme deformation, conventional finite element method has difficulty in simulating them. The present study relies on generalized interpolation material point method, which is one of meshless methods. Although there are differences between the model test and numerical simulation caused by boundary conditions, incomplete saturation, and exclusion of groundwater flow, similar ground deformation characteristics are observed both in the model test and numerical simulation.