• 제목/요약/키워드: 할선법

검색결과 7건 처리시간 0.017초

그래픽 사용자 인터페이스(GUI)를 도입한 선형설계 기법에 관한 연구 (A Study on Hull Form Design Techniques Based on Graphical User Interface)

  • 신현경;박규원
    • 대한조선학회논문집
    • /
    • 제30권4호
    • /
    • pp.17-22
    • /
    • 1993
  • 3차원 자유곡면의 교차문제는 기하학적인 방법과 수치적인 방법으로 해결할 수 있으며, 지금까지는 일반적으로 선체형상의 단면을 얻기 위해서 기하학적인 방법인 곡면분할 기법을 사용하여 왔다. 본 논문에서는 할선법, 선형보간법 및 반분법 등 간단한 수치해석 방법들을 사용하여서, Bi-Cubic B-Spline Surface로 표현된 선체형상과 임의의 평면에 의해 교차된 선체 단면형상을 갖는 방법을 수행하여 비교 검토하고자 한다. 곡면간의 교체문제는 임의의 단면형상 파악, 선도작성 및 offset Table 구성에 직접 응용되어진다.

  • PDF

첨도에 의한 분석성분의 군집성을 고려한 독립성분분석 (Independent Component Analysis for Clustering Analysis Components by Using Kurtosis)

  • 조용현
    • 정보처리학회논문지B
    • /
    • 제11B권4호
    • /
    • pp.429-436
    • /
    • 2004
  • 본 논문에서는 침도를 추가한 뉴우턴법과 할선법에 기초한 고정점 알고리즘의 독립성분분석을 각각 제안하였다. 여기서 첨도의 추가는 유사한 속성을 가지는 성분의 군집화된 분석순서를 얻기 위함이고, 고정점 알고리즘은 학습파라미터와 무관한 빠른 성분분석과 우수한 분석성능을 얻기 위함이다. 제안된 두 가지 독립성분분석 각각을 500개 샘플을 가지는 6개의 혼합신호와 $512\times512$ 픽셀을 가지는 10개의 혼합영상 분리에 각각 적용한 결과, 제안된 두 가지 기법은 항상 일정한 분석순서를 유지하여 첨도가 추가되지 않은 기존의 기법들에서 알고리즘의 수행 때마다 랜덤하게 변하는 분석순서의 제약을 해결할 수 있었다. 특히 군집화의 속성을 가진 제안된 독립성분분석들은 신호나 영상의 분류나 식별에도 적용할 수 있다. 한편 할선법의 제안된 기법이 뉴우턴법의 제안된 기법보다 빠르면서도 우수한 분리성능이 있음을 확인하였다.

할선법의 FP-ICA를 이용한 기하학적 변형에 강건한 디지털영상 워터마킹 (Robust Watermarking for Digital Images in Geometric Distortions Using FP-ICA of Secant Method)

  • 조용현
    • 정보처리학회논문지B
    • /
    • 제11B권7호
    • /
    • pp.813-820
    • /
    • 2004
  • 본 논문에서는 할선법에 기초한 고정점 알고리즘의 ICA를 이용하여 기하학적 변형에 강건한 디지털 영상의 워터마킹을 제안하였다. 석기서 할선법의 고정점 알고리즘은 빠르면서도 개선된 추출성능을 얻기 위함이고, ICA의 이용은 검출 및 추출 과정에서 워터마크의 위치나 크기 등과 원본 및 키 영상에 대한 사전 지식의 요구를 없애기 위함이다. 제안된 기법을 $256{\times}25$ 픽셀의 원 영상(레나), 키 영상, 그리고 문자 워터마크 및 가우스잡음 워터마크에 각각 적용한 결과, 뉴우턴법의 고정점 알고리즘 ICA 워터마킹보다 빠른 추출시간과 개선된 추출성능이 있음을 확인하였다. 또한 제안된 할선법의 고정점 알고리즘 ICA에 의한 워터마킹은 크기와 회전 및 자름과 같은 기하학적 변형에 견고한 성능이 있음을 확인하였다. 특히 영상들 상호 간에 상관성이 적은 가우스잡음 워터마크가 문자 워터마크에 비해 우수한 추출성능이 있음도 확인하였다. 한편 워터마크의 검출 및 추출과정에 원본 영상들에 대한 사전지식도 요구되지 않았다.

할선법의 고정점 알고리즘과 첨도에 의한 군집성의 독립성분분석 (Independent Component Analysis for Clustering Components by Using Fixed-Point Algorithm of Secant Method and Kurtosis)

  • 조용현
    • 한국지능시스템학회논문지
    • /
    • 제14권3호
    • /
    • pp.336-341
    • /
    • 2004
  • 본 논문에서는 할선법의 고정점 알고리즘과 첨도를 조합한 독립성분분석을 제안하였다. 여기서 할선법의 고정점 알고리즘은 기존 뉴우턴법의 고정점 알고리즘에서 요구되는 복잡한 도함수의 계산과정을 간략화 함으로써 성분의 빠른 분석과 좀더 우수한 분석성능을 얻기 위함이고, 첨도는 유사한 속성을 가지는 성분의 군집화된 분석순서를 얻기 위함이다. 제안된 독립성분분석을 500개 샘플을 가지는 6개의 혼합신호와 $512{\times}512$ 픽셀을 가지는 8개의 혼합영상의 분리에 각각 적용하여 실험한 결과, 제안된 기법은 항상 일정한 분석순서를 유지하여 기존 할선법의 고정점 알고리즘에서 수행 때마다 랜덤하게 변하는 분석순서의 제약을 해결할 수 있었다. 특히 군집화의 속성을 가진 제안된 독립성분분석은 신호나 영상의 분류나 식별에도 적용할 수 있음을 확인하였다.

조합형 고정점 알고리즘에 의한 신경망 기반 독립성분분석 (Independent Component Analysis Based on Neural Networks Using Hybrid Fixed-Point Algorithm)

  • 조용현
    • 정보처리학회논문지B
    • /
    • 제9B권5호
    • /
    • pp.643-652
    • /
    • 2002
  • 본 연구에서는 신경망 기반 독립성분분석의 분리성능을 개선하기 위해 할선법과 모멘트의 조합형 고정점 알고리즘을 제안하였다. 할선법은 독립성분 상호간의 정보를 최소화하는 목적함수의 근을 근사적으로 구함으로써 계산과정을 단순화하여 좀 더 개선된 분리성능을 얻기 위함이고, 모멘트는 계산과정에서 발생하는 발진을 억제하여 보다 빠른 분리속도를 얻기 위함이다. 이렇게 하면 할선법이 가지는 근사성에 따른 우수성과 과거의 속성을 반영하여 발진을 억제하는 모멘트의 우수성을 동시에 살릴 수 있다. 제안된 알고리즘을 $256\times{256}$ 픽셀의 8개 지문과 $512\times{512}$ 픽셀의 10개 영상으로부터 임의의 혼합행렬에 따라 생성된 복합지문과 복합영상을 각각 대상으로 시뮬레이션 한 결과, 뉴우턴법에 기초한 기존의 알고리즘과 할선법만에 기초한 알고리즘보다 각각 우수한 분리률과 빠른 분리속도가 있음을 확인하였다. 또한 할선법의 이용은 뉴우턴법을 이용한 고정점 알고리즘보다 초기값에도 덜 의존하며, 문제의 규모가 커짐에 따른 비현실적인 분리시간도 해결할 수 있음을 확인하였다.

고정점 알고리즘의 독립성분분석과 적응분할의 상호정보 추정에 의한 입력변수선택 (Input Variable Selection by Using Fixed-Point ICA and Adaptive Partition Mutual Information Estimation)

  • 조용현
    • 한국지능시스템학회논문지
    • /
    • 제16권5호
    • /
    • pp.525-530
    • /
    • 2006
  • 본 논문에서는 고정점 알고리즘의 독립성분분석과 적응분할의 상호정보 추정을 조합한 입력변수선택 기법을 제안하였다. 여기서 고정점 알고리즘의 독립성분분석은 할선법에 기반을 둔 방법으로 입력변수 간의 독립성을 빠르게 찾기 위함이고, 적응분할의 상호정보 추정은 입력변수의 확률밀도함수 계산에서 동일한 량의 샘플분할을 가능하게 하여 변수상호간의 종속성을 좀 더 정확하게 구하기 위함이다. 제안된 기법을 인위적으로 제시된 각 500개의 샘플을 가지는 7개의 신호와 특정지역을 대상으로 측정된 각 55개의 샘플을 가진 24개의 환경오염신호를 대상으로 실험한 결과, 빠르고 정확한 변수의 선택이 이루어짐을 확인하였다. 또한 할선법의 고정점 알고리즘 독립성분분석을 수행하지 않을 때와 정규분할의 상호정보 추정 때보다 각각 우수한 선택성능이 있음을 확인하였다.

신경망 기반 독립성분분석을 이용한 효율적인 복합영상분리 (An Efficient Composite Image Separation by Using Independent Component Analysis Based on Neural Networks)

  • 조용현;박용수
    • 한국지능시스템학회논문지
    • /
    • 제12권3호
    • /
    • pp.210-218
    • /
    • 2002
  • 본 연구에서는 근사화된 학습알고리즘의 신경망 기반 독립성분분석에 의한 효율적인 복합영상 분리기법을 제안하였다. 제안된 학습알고리즘은 엔트로피 최적화론 위한 목적함수의 판을 구하기 위해, 도함수 계산을 요구하는 뉴우턴법 대신 단순히 함수 값만을 이용하여 계산을 근사화한 할선법 기초한 고정점 알고리즘이다. 이렇게 하면 뉴우턴법에서 요구되는 복잡한 도함수의 계산과정을 간략화 할 수 있어 고정점 알고리즘의 독립성분분석이 가지는 학습성능을 더욱 더 개선시킬 수 있다. 제안된 학습알고리즘의 독립성분분석 기법을 500개의 샘플을 가지는 4개 신호와 $512{\times}512$의 픽셀을 가지는 10개의 영상을 대상으로 임의의 혼합행렬에 따라 발생되는 복합신호 및 복합영상들을 시뮬레이션하였다. 시뮬레이션 결과, 기존의 뉴우턴법에 기초한 고정점 알고리즘의 분석기법보다 빠른 학습속도와 개선된 분리성능이 있음을 확인하였다. 특히 기존의 알고리즘에서 임의로 선정되는 초기값에 의존하는 학습성능과 대규모의 영상분리에서 발생될 수 있는 비현실적인 학습시간도 함께 해결할 수 있음을 확인할 수 있었다.