• Title/Summary/Keyword: 한반도 동남부

Search Result 75, Processing Time 0.029 seconds

Geological Structures and Extension Mode of the Southwestern Part(Bomun Area) of the Miocene Pohang Basin, SE Korea (한반도 동남부 마이오세 포항분지 남서부(보문지역)의 지질구조와 확장형식)

  • Song, Cheol Woo;Kim, Min-Cheol;Lim, Hyewon;Son, Moon
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.235-258
    • /
    • 2022
  • We interpreted the evolutionary history of the southwestern part of the Pohang Basin, the largest Miocene basin in the southeastern part of the Korean Peninsula, based on the detailed geological mapping and analysis of the geological structures. The southwestern part of the Pohang Basin can be divided into the Bomun Domain in the west and Ocheon Domain in the east by an NNE-trending horst-in-graben. These two domains have different geometries and deformation histories. The Bomun Domain was rarely deformed after the incipient extension of the basin, whereas the Ocheon Domain is an area where continued and overlapped deformations occurred after the basin fill deposition. Therefore, the Bomun Domain provides critical information on the initial extension mode of the Pohang Basin. The subsidence of the Bomun Domain was led by the zigzag-shaped western border fault that consists of NNE-striking normal and NNW-striking dextral strike-slip fault segments. This border fault is connected to the Yeonil Tectonic Line (YTL), a regional dextral principal displacement zone and the westernmost limit of Miocene crustal deformation in SE Korea. Therefore, it is interpreted that the Pohang Basin was initially extended in WNW-ESE direction as a transtensional fault-termination basin resulting from the movement of NNE-striking normal and/or oblique-slip faults formed as right-stepover in the northern termination of the YTL activated since approximately 17-16.5 Ma. As a result, an NNE-trending asymmetric graben or half-graben exhibiting an westward deepening of basin depth was formed in the Bomun Domain. Afterward, crustal extension and deformation were migrated to the east, including the Ocheon Domain.

Paleostress Reconstruction in the Tertiary Basin Areas in Southeastern Korea (한반도 동남부 제3기 분지지역에서의 고응력장 복원)

  • Moon, Tae-Hyun;Son, Moon;Chang, Tae-Woo;Kim, In-Soo
    • Journal of the Korean earth science society
    • /
    • v.21 no.3
    • /
    • pp.230-249
    • /
    • 2000
  • Southeastern Korean Peninsula has undergone the polyphase deformations according to the changes of regional tectonic settings during the Cenozoic. Through analyses of more than 600 fault-slip data gathered in the study area, five tectonic events are revealed as the followings: (I) NW-SE transtension, (II) NW-SE transpression, (III) NE-SW pure or radial extension, (IV) NNE-SSW transpression, (V) NE or ENE-WSW transpression. Event I was induced by the pull-apart type extension of the East Sea during 24-16 Ma, which resulted in the NW-SE extension of the Tertiary Basins in SE Korea. Event II was resulted from the collision of SW Japan and Izu-Bonnin Arc (or Kuroshio Paleoland) on the Philippine Sea Plate at ${\sim}$ 15 Ma, which stopped the extension of the Tertiary Basins and originated the uplift of fault blocks in and around SE Korean Peninsula. It was continued until ${\sim}$ 10 Ma. Event III is interpreted as the post-tectonic event after the block-uplifts due to the event II, which indicates a temporal lull in activity of the Philippine Sea Plate since 10 Ma. Event IV was originated from the resumption in activity of the Philippine Sea Plate which was restarted to move toward north at ${\sim}$ 6 Ma. The event made the EW compressional structures behind SW Japan as well as in the Korea Straits, and thus the block-uplifts in SE Korea was resumed again. Lastly, event V was resulted from the gradual decrease in influence of the Philippine Sea Plate and the cooperative compression due to the subduction of the Pacific Sea Plate and the collision of the Indian Plate since 5-3.5 Ma, which generated the NS compressional structures in the offshore along the eastern coast of the Korean Peninsula and thrust up the fault-blocks toward west. This event is continuing so far, and thus is making the active faultings resulting in the present earthquakes of the Korean Peninsula.

  • PDF

A Proposal of Geological Investigation method Concomitant with Ground Construction : In the Light of Southeast Korean peninsula. (건설공사에 수반되는 지질조사 방법에 대한 제안 : 한반도 동남부 지역을 중심으로)

  • 류춘길;김성욱;이현재;정성교
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.87-92
    • /
    • 2002
  • Engineering geological studies were conducted for igneous rocks in southeast Korean peninsula. The purpose of the study is to establish zoning in view of engineering geology in ground construction. For engineering geological implication, lithology, lineament structure and discontinuities were surveyed and analysed. Using constructed data, We compared geological and engineering geological characteristics and made out the detailed engineering geological map. The map responses engineering characteristics such as weathering degrees, discontinuity systems of different rock types.

  • PDF

An Inquiry into the Formation and Deformation of the Cretaceous Gyeongsang (Kyongsang) Basin, Southeastern Korea (한반도 동남부 백악기 경상분지의 형성과 변형에 관한 질의)

  • Ryu In-Chang;Choi Seon-Gyu;Wee Soo-Meen
    • Economic and Environmental Geology
    • /
    • v.39 no.2 s.177
    • /
    • pp.129-149
    • /
    • 2006
  • Previously published stratigraphic, sedimentologic, paleontologic, paleomagnetic and geophysical data are reviewed to make an understanding on the tectonic evolution of the Cretaceous Gyeongsang (Kyongsang) basin, southeast Korea. A stratigraphic framework and a tectonic model on the formation and deformation of the Gyeongsang Basin are newly proposed on the basis of integration these data with magmatism and mineralization ages in the basin. A newly proposed stratigraphic framework indicates that strata in the basin can be subdivided into five distinct stratigraphic units that represent pre-rifting, syn-rifting, inversion I, II, and III stages. The Gyeongsang Basin was formed initially as a pre-rifting stage due to north-south extension in the Late Jurassic prior to a syn-riftins stage that resulted from east-west extension during the Early Cretaceous. In the Late Cretaceous, the basin was deformed by three-staged sequential deformation of north-south, northwest-southeast, and east-west compressions. The tectonic history of the basin has been largely controlled by the change of motion of the Izanagi Plate from north to northwest during the Cretaceous. In the early Cretaceous, the Izanagi Plate began to subduct northward beneath the Eurasian Plate and caused the left-lateral strike-slip fault systems in the southern part of the peninsula. The left-lateral wrenching of these fault systems was causally linked to development of pull-apart basins, such as the Gyeongsang Basin in the southeastern part of the peninsula. However, northwestward movement of the Izanagi Plate during the Late Cretaceous probably led to the extensive volcanism as well as sequential deformations in the basin. The stratigraphic and tectonic model, which is newly proposed as a result of this study, may be expected to enhancing the efficiency for exploration and exploitation of useful mineral resources in the basin as well as establishing geologic history in the Cretaceous Gyeongsang Basin. Together with the spatial and temporal correlation of the Cretaceous basins in adjacent areas, this stratigraphic and tectonic model provides a new geologic paradigm to delineate the sophisticated tectonic history of East Asia turing the Cretaceous.

Granites and Tectonics of South Korea (남한(南韓)의 화강암류(花崗岩類)와 지각변동(地殼變動))

  • Kim, Ok Joon
    • Economic and Environmental Geology
    • /
    • v.8 no.4
    • /
    • pp.223-230
    • /
    • 1975
  • South Korea is divided tectonically into four segments. The Kyonggi-Ryongnam massif is composed of Precambrian schists and gneisses and consititutes a base for the succeeding formations. The Okcheon geosynclinal zone in the Kyonggi-Ryongnam massif strectches from southwest to northeast diagonally across the peninsula in a direction known as the Sinian direction. Its northeastern part is composed primarily of Paleozoic to early Mesozoic sedimentary formations and the southwestern part of the late Precambrian Okcheon metamorphic series. The Kyongsang basin occupies the southeast and southwest of the peninsula and is made up of a thick series of Cretaceous terrestrial sedimentary and andesitic rocks. A few small Tertiary basins are scattered in the eastern coastal area and in Cheju Island, and are composed of marine sedimentary and basaltic rocks. Jurassic Daebo granites intrude the Kyonggi-Ryongnam massif and the Okcheon zone in the Sinian direction, whereas late Cretaceous Bulkuksa granites are scattered randomly in the Kyongsang basin.

  • PDF

신암리각섬암의 암석화학과 지구조적 의의

  • 박영석;김정빈;김종균
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.302-305
    • /
    • 2003
  • 진안-장수지역 (이하 본 역)은 한반도를 구성하는 중요한 지괴인 영남육괴 지리산지역의 북서부와 옥천지향사대의 동남연변부에 위치한 곳으로 두 지괴의 경계면을 따라 압쇄작용으로 형성된 순창전단대가 분포하며 지질시대와 암석학적 특징이 상이한 여러 화성암체가 나타난다. 본 연구지역의 지질은 지리산 편마암복합체를 기반으로 선캠브리아기의 변성퇴적암류, 신암리섬암, 장수화강편마암, 선각산화강편마암 그리고 쥬라기의 대성리엽리상화강암, 순창엽리상화강암과 남원화강암으로 구성된다. (중략)

  • PDF