• Title/Summary/Keyword: 한글 학습

Search Result 879, Processing Time 0.028 seconds

A Model to Automatically Generate Non-verbal Expression Information for Korean Utterance Sentence (한국어 발화 문장에 대한 비언어 표현 정보를 자동으로 생성하는 모델)

  • Jaeyoon Kim;Jinyea Jang;San Kim;Minyoung Jung;Hyunwook Kang;Saim Shin
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.91-94
    • /
    • 2023
  • 자연스러운 상호작용이 가능한 인공지능 에이전트를 개발하기 위해서는 언어적 표현뿐 아니라, 비언어적 표현 또한 고려되어야 한다. 본 논문에서는 한국어 발화문으로부터 비언어적 표현인 모션을 생성하는 연구를 소개한다. 유튜브 영상으로부터 데이터셋을 구축하고, Text to Motion의 기존 모델인 T2M-GPT와 이종 모달리티 데이터를 연계 학습한 VL-KE-T5의 언어 인코더를 활용하여 구현한 모델로 실험을 진행하였다. 실험 결과, 한국어 발화 텍스트에 대해 생성된 모션 표현은 FID 스코어 0.11의 성능으로 나타났으며, 한국어 발화 정보 기반 비언어 표현 정보 생성의 가능성을 보여주었다.

  • PDF

A Study on Evaluating Summarization Performance using Generative Al Model (생성형 AI 모델을 활용한 요약 성능 평가 연구 )

  • Gyuri Choi;Seoyoon Park;Yejee Kang;Hansaem Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.228-233
    • /
    • 2023
  • 인간의 수동 평가 시 시간과 비용의 소모, 주석자 간의 의견 불일치, 평가 결과의 품질 등 불가피한 한계가 발생한다. 본 논문에서는 맥락을 고려하고 긴 문장 입출력이 가능한 ChatGPT를 활용한 한국어 요약문 평가가 인간 평가를 대체하거나 보조하는 것이 가능한가에 대해 살펴보았다. 이를 위해 ChatGPT가 생성한 요약문에 정량적 평가와 정성적 평가를 진행하였으며 정량적 지표로 BERTScore, 정성적 지표로는 일관성, 관련성, 문법성, 유창성을 사용하였다. 평가 결과 ChatGPT4의 경우 인간 수동 평가를 보조할 수 있는 가능성이 있음을 확인하였다. ChatGPT가 영어 기반으로 학습된 모델임을 고려하여 오류 발견 성능을 검증하고자 한국어 오류 요약문으로 추가 평가를 진행하였다. 그 결과 ChatGPT3.5와 ChatGPT4의 오류 요약 평가 성능은 불안정하여 인간을 보조하기에는 아직 어려움이 있음을 확인하였다.

  • PDF

Exploring the Relationship Between Machine and Human Performance in Natural Language Processing Tasks (자연어 처리 태스크에 대한 기계와 인간의 성능 상관관계 연구)

  • Seoyoon Park;Heejae Kim;Seong-Woo Lee;Yejee Kang;Yeonji Jang;Hansaem Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.485-490
    • /
    • 2023
  • 언어 모델 발전에 따라 사람과 유사하게 글을 생성하고 태스크를 수행하는 LLM들이 등장하고 있다. 하지만 아직까지도 기계와 사람의 수행 과정에 초점을 맞추어 차이점을 드러내는 연구는 활성화되지 않았다. 본 연구는 자연어 이해 및 생성 태스크 수행 시 기계와 인간의 수행 과정 차이를 밝히고자 하였다. 이에 이해 태스크로는 문법성 판단, 생성 태스크로는 요약 태스크를 대상 태스크로 선정하였고, 기존 주류 사전학습 모델이었던 transformer 계열 모델과 LLM인 ChatGPT 3.5를 사용하여 실험을 진행하였다. 실험 결과 문법성 판단 시 기계들이 인간의 언어적 직관을 반영하지 못하는 양상을 발견하였고, 요약 태스크에서는 인간과 기계의 성능 판단 기준이 다름을 확인하였다.

  • PDF

Advancing Societal Statistics Processing Methodology through Artificial Intelligence: A Case Study on Household Trend Survey and Time Use Survey (인공지능 기반 사회 통계 생산 방법론 고도화 방안: 가계동향조사와 생활시간조사 사례)

  • Kyo-Joong Oh;Ho-Jin Choi;Ilgu Kim;Seungwoo Han;Kunsoo Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.563-567
    • /
    • 2023
  • 본 연구는 한국 통계청이 수행하는 가계동향조사와 생활시간조사에서 자료처리 과정 및 방법을 혁신하려는 시도로, 기존의 통계 생산 방법론의 한계를 극복하고, 대규모 데이터의 효과적인 관리와 분석을 가능하게 하는 인공지능 기반의 통계 생산을 목표로 한다. 본 연구는 데이터 과학과 통계학의 교차점에서 진행되며, 인공지능 기술, 특히 자연어 처리와 딥러닝을 활용하여 비정형 텍스트 분류 방법의 성능을 검증하며, 인공지능 기반 통계분류 방법론의 확장성과 추가적인 조사 확대 적용의 가능성을 탐구한다. 이 연구의 결과는 통계 데이터의 품질 향상과 신뢰성 증가에 기여하며, 국민의 생활 패턴과 행동에 대한 더 깊고 정확한 이해를 제공한다.

  • PDF

Llama2 Cross-lingual Korean with instruction and translation datasets (지시문 및 번역 데이터셋을 활용한 Llama2 Cross-lingual 한국어 확장)

  • Gyu-sik Jang;;Seung-Hoon Na;Joon-Ho Lim;Tae-Hyeong Kim;Hwi-Jung Ryu;Du-Seong Chang
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.627-632
    • /
    • 2023
  • 대규모 언어 모델은 높은 연산 능력과 방대한 양의 데이터를 기반으로 탁월한 성능을 보이며 자연어처리 분야의 주목을 받고있다. 이러한 모델들은 다양한 언어와 도메인의 텍스트를 처리하는 능력을 갖추게 되었지만, 전체 학습 데이터 중에서 한국어 데이터의 비중은 여전히 미미하다. 결과적으로 이는 대규모 언어 모델이 영어와 같은 주요 언어들에 비해 한국어에 대한 이해와 처리 능력이 상대적으로 부족함을 의미한다. 본 논문은 이러한 문제점을 중심으로, 대규모 언어 모델의 한국어 처리 능력을 향상시키는 방법을 제안한다. 특히, Cross-lingual transfer learning 기법을 활용하여 모델이 다양한 언어에 대한 지식을 한국어로 전이시켜 성능을 향상시키는 방안을 탐구하였다. 이를 통해 모델은 기존의 다양한 언어에 대한 손실을 최소화 하면서도 한국어에 대한 처리 능력을 상당히 향상시켰다. 실험 결과, 해당 기법을 적용한 모델은 기존 모델 대비 nsmc데이터에서 2배 이상의 성능 향상을 보이며, 특히 복잡한 한국어 구조와 문맥 이해에서 큰 발전을 보였다. 이러한 연구는 대규모 언어 모델을 활용한 한국어 적용 향상에 기여할 것으로 기대 된다.

  • PDF

Generating Label Word Set based on Maximal Marginal Relevance for Few-shot Name Entity Recognition (퓨샷 개체명 인식을 위한 Maximal Marginal Relevance 기반의 라벨 단어 집합 생성)

  • HyoRim Choi;Hyunsun Hwang;Changki Lee
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.664-671
    • /
    • 2023
  • 최근 다양한 거대 언어모델(Large Language Model)들이 개발되면서 프롬프트 엔지니어링의 대한 다양한 연구가 진행되고 있다. 본 논문에서는 퓨삿 학습 환경에서 개체명 인식의 성능을 높이기 위해서 제안된 템플릿이 필요 없는 프롬프트 튜닝(Template-free Prompt Tuning) 방법을 이용하고, 이 방법에서 사용된 라벨 단어 집합 생성 방법에 Maximal Marginal Relevance 알고리즘을 적용하여 해당 개체명에 대해 보다 다양하고 구체적인 라벨 단어 집합을 생성하도록 개선하였다. 실험 결과, 'LOC' 타입을 제외한 나머지 개체명 타입에서 'PER' 타입은 0.60%p, 'ORG' 타입은 4.98%p, 'MISC' 타입은 1.38%p 성능이 향상되었고, 전체 개체명 인식 성능은 1.26%p 향상되었다. 이를 통해 본 논문에서 제안한 라벨 단어 집합 생성 기법이 개체명 인식 성능 향상에 도움이 됨을 보였다.

  • PDF

Generative Korean Inverse Text Normalization Model Combining a Bi-LSTM Auxiliary Model (Bi-LSTM 보조 신경망 모델을 결합한 생성형 한국어 Inverse Text Normalization 모델)

  • Jeongje Jo;Dongsu Shin;Kyeongbin Jo;Youngsub Han;Byoungki Jeon
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.716-721
    • /
    • 2023
  • Inverse Text Normalization(ITN) 모델은 음성 인식(STT) 엔진의 중요한 후처리 영역 중 하나이며, STT 인식 결과의 가독성을 개선한다. 최근 ITN 모델에 심층신경망을 활용한 연구가 진행되고 있다. 심층 신경망을 사용하는 대부분의 선행연구는 문장 내 변환이 필요한 부분에 토큰 태깅을 진행하는 방식이다. 그러나 이는 Out-of-vocabulary(OOV) 이슈가 있으며, 학습 데이터 구축 시 토큰 단위의 섬세한 태깅 작업이 필요하다는 한계점이 존재한다. 더불어 선행 연구에서는 STT 인식 결과를 그대로 사용하는데, 이는 띄어쓰기가 중요한 한국어 ITN 처리에 변환 성능을 보장할 수 없다. 본 연구에서는 BART 기반 생성 모델로 생성형 ITN 모델을 구축하였고, Bi-LSTM 기반 보조 신경망 모델을 결합하여 STT 인식 결과에 대한 고유명사 처리, 띄어쓰기 교정 기능을 보완한 모델을 제안한다. 또한 보조 신경망을 통해 생성 모델 처리 여부를 판단하여 평균 추론 속도를 개선하였다. 실험을 통해 두 모델의 각 정량 성능 지표에서 우수한 성능을 확인하였고 결과적으로 본 연구에서 제안하는 두 모델의 결합된 방법론의 효과성을 제시하였다.

  • PDF

Comparative analysis of large language model Korean quality based on zero-shot learning (Zero-shot learning 기반 대규모 언어 모델 한국어 품질 비교 분석)

  • Yuna Hur;Aram So;Taemin Lee;Joongmin Shin;JeongBae Park;Kinam Park;Sungmin Ahn;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.722-725
    • /
    • 2023
  • 대규모 언어 모델(LLM)은 대규모의 데이터를 학습하여 얻은 지식을 기반으로 텍스트와 다양한 콘텐츠를 인식하고 요약, 번역, 예측, 생성할 수 있는 딥러닝 알고리즘이다. 초기 공개된 LLM은 영어 기반 모델로 비영어권에서는 높은 성능을 기대할 수 없었으며, 이에 한국, 중국 등 자체적 LLM 연구개발이 활성화되고 있다. 본 논문에서는 언어가 LLM의 성능에 영향을 미치는가에 대하여 한국어 기반 LLM과 영어 기반 LLM으로 KoBEST의 4가지 Task에 대하여 성능비교를 하였다. 그 결과 한국어에 대한 사전 지식을 추가하는 것이 LLM의 성능에 영향을 미치는 것을 확인할 수 있었다.

  • PDF

Design and Implementation of STEAM Game Contents for infant Learning Education using Gyroscope Sensor

  • Song, Mi-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.1
    • /
    • pp.93-99
    • /
    • 2020
  • With the development of digital technology and the increasing demand for learning how to improve one's ability to solve problems through play and participation interactions, a variety of edutainment game contents are being developed. The edutainment game contents developed until recently have received a large number of contents for intelligence development and transfer of knowledge such as Korean and English mathematics for children and children. Recently, there have been various researches on the necessity and effect of STEAM education that foster convergent science and technology talents with comprehensive thinking ability and scientific inquiry spirit through the fusion education method among the subjects including science, technology, engineering, mathematics, And there is a growing need for the development of a parish suitable for STEAM education. However, there is a lack of STEAM educational content development that incorporates the technology of creative convergence talent training to develop talented people who can think and solve problems by crossing various academic boundaries. Therefore, this study develops game contents for early childhood education by combining STEAM education which foster convergent science and technology talents with comprehensive thinking ability and scientific inquiry spirit. And we designed and implemented STEAM game contents for infant learning education which can induce the interest of children and have fun by using gyroscope sensor of smartphone.

Animation Generation for Chinese Character Learning on Mobile Devices (모바일 한자 학습 애니메이션 생성)

  • Koo, Sang-Ok;Jang, Hyun-Gyu;Jung, Soon-Ki
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.12
    • /
    • pp.894-906
    • /
    • 2006
  • There are many difficulties to develop a mobile contents due to many constraints on mobile environments. It is difficult to make a good mobile contents with only visual reduction of existing contents on wire Internet. Therefore, it is essential to devise the data representation and to develop the authoring tool to meet the needs of the mobile contents market. We suggest the compact mobile contents to learn Chinese characters and developed its authoring tool. The animation which our system produces is realistic as if someone writes letters with pen or brush. Moreover, our authoring tool makes a user generate a Chinese character animation easily and rapidly although she or he has not many knowledge in computer graphics, mobile programming or Chinese characters. The method to generate the stroke animation is following: We take basic character shape information represented with several contours from TTF(TrueType Font) and get the information for the stroke segmentation and stroke ordering from simple user input. And then, we decompose whole character shape into some strokes by using polygonal approximation technique. Next, the stroke animation for each stroke is automatically generated by the scan line algorithm ordered by the stroke direction. Finally, the ordered scan lines are compressed into some integers by reducing coordinate redundancy As a result, the stroke animation of our system is even smaller than GIF animation. Our method can be extended to rendering and animation of Hangul or general 2D shape based on vector graphics. We have the plan to find the method to automate the stroke segmentation and ordering without user input.