• Title/Summary/Keyword: 한글 인쇄체

검색결과 55건 처리시간 0.023초

한글 인쇄체 문자의 형식 분류 및 비선형적 자소 분리에 관한 연구 (A Study on Korean Printed Character Type Classification And Nonlinear Grapheme Segmentation)

  • 박용민;김도현;차의영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2006년도 춘계종합학술대회
    • /
    • pp.784-787
    • /
    • 2006
  • 본 논문에서는 한글 인쇄체 문자의 자소를 비선형적으로 분리하는 방법을 제안한다. 자소 분리 대상 문자는 자소의 조합 방식에 따라 6개의 형식으로 분류한다. 인쇄체 한글의 6형식 분류를 위해 그레이 레벨의 문자 이미지로부터 망 특성과 수직 수평 투영 기법을 이용해 특징을 추출하고, 오류 역전파 기법을 이용하여 분류를 시도한다. 분류된 문자 형식을 기반으로 분리 후보 영역을 지정하고, 이 영역을 기반으로 다단식 그래프 탐색 알고리즘을 이용하여 최적의 비선형적 자소 분리 경로를 찾아낸다. 실험 결과, 제안한 방법은 한글의 6형식 분류에 적합하였으며, 자소가 서로 붙어 선형적으로 분리가 어려운 문자의 자소 분리에 좋은 성능을 나타내었다.

  • PDF

대용량 오프라인 한글 글씨 영상 데이터베이스 KU-1의 설계 및 구축 (Design and Construction of a Large-set Off-line Handwritten Hangul Character Image Database KU-1)

  • 김대인;김상엽;이성환
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1997년도 제9회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.152-159
    • /
    • 1997
  • 최근 들어 인쇄체 문자 인식 기술의 발전에 힘입어 필기체 한글 인식에 관한 연구가 활발히 진행되고 있다. 인쇄체 문자와는 달리 자연스럽게 필기된 한글 글씨는 동일한 문자라 하더라도 같은 모양을 가지고 있다고 단정하는 것이 불가능할 정도로 필기자의 필기 유형에 따른 다양한 변형을 내포하고 있다. 따라서 효과적인 한글 글씨 인식기를 개발하기 위해서는 다양한 변형을 포함하는 대용량의 한글 글씨 영상 데이터베이스가 필수적이다. 본 논문에서는 시스템공학연구소 주관 국어 정보 베이스 개발 사업의 일환으로 고려대학교에서 구축 중인 오프라인 한글 글씨 영상 데이터베이스, KU-1에 대해 간략히 소개하고자 한다. 본 데이터베이스는 KS C 완성형 한글 사용 빈도순 상위 1,500자에 대하여 다양한 계층, 직업, 연령, 지역 분포를 고려한 1,000명 이상의 필기자가 정서체와 본인의 평소 자유 필체로 필기한 1,000벌의 명도 한글 글씨 영상으로 구성되어 있다.

  • PDF

연결요소 분석에 기반한 인쇄체 한글 주소와 필기체 한글 주소의 구분 (Classification of Handwritten and Machine-printed Korean Address Image based on Connected Component Analysis)

  • 장승익;정선화;임길택;남윤석
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권10호
    • /
    • pp.904-911
    • /
    • 2003
  • 본 논문에서는 우편봉투 상에 기입된 인쇄체 한글 주소와 필기체 한글 주소를 효과적으로 구분할 수 있는 방법을 제안한다. 문자인식 모듈을 포함하는 각종 응용 시스템에서 입력 영상이 인쇄체인지 필기체인지 구분하는 것은 매우 중요하다. 이는 대부분의 경우 인쇄체 영상과 필기체 영상이 갖는 특징이 상이하여, 각 영상에서의 문자 및 문자열 분리 방법, 문자 인식 방법 둥이 매우 상이하게 개발되기 때문이다. 본 논문에서 제안한 구분 방법은 연결요소 추출 및 병합, 특징 추출, 영상 구분 순으로 수행된다. 연결요소 추출 및 병합 단계에서는 입력영상으로부터 연결요소를 추출한 후 일부 연결요소들에 대하여 병합을 시도하며, 특징 추출 단계에서는 병합결과 얻어진 연결요소들의 그룹들로부터 폭과 위치에 관련된 특징을 추출하고, 영상 구분 단계에서는 추출한 특징을 입력으로 제공받는 다충퍼셉트론을 사용하여 구분을 시도한다. 제안한 방법의 우수성을 증명하기 위해 실제 우편물로부터 추출된 3,147개의 한글 주소 영상을 사용하여 실험한 결과, 98.85%의 구분률을 보여주었다.

모바일 환경의 OCR Anyword (Anyword OCR in Ubiquitos Computing)

  • 박종경;음봉규;권용식;진성아
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2006년도 춘계 종합학술대회 논문집
    • /
    • pp.152-155
    • /
    • 2006
  • 최근 모바일기기에 유비쿼터스 콘텐츠를 구현하는 시도가 활발히 진행되고 있다. 핸드폰을 이용해 위치를 판단한다거나, 핫코드를 찍어 상품을 구매하는 등의 콘텐츠가 개발되었다. 또한, 모바일기기도 발전하여 핸드폰, PDA 같은 모바일기기의 내장 카메라모듈은 필수사항이 되었다. 본 연구는 모바일기기의 내장 카메라모듈을 이용한 모바일 환경에 적합한 한글 문자인식 시스템을 제안한다. 본 연구의 시스템은 모바일기기로 PDA를 사용하였으며, PDA의 카메라모듈을 통하여 인쇄체 한글 영상을 입력받고, 모바일기기의 느린 연산속도를 보완하기 위하여, 서버로 이미지와 기울기 정보를 전달한 후, 서버에서 기울어진 인쇄체 문자영상을 보정하고, 프로젝션을 통해 문자를 추출한 후, 차연산을 이용한 매칭 방법으로 인쇄체 한글을 인식한다. 인식한 문자들은 사용자의 수정을 거쳐 텍스트 문서로 저장할 수 있다.

  • PDF

원형 패턴 벡터를 이용한 인쇄체 한글 인식 (Recognition of printed hangul text using circular pattern vectors)

  • 정지호;최태영
    • 대한전자공학회논문지SP
    • /
    • 제38권3호
    • /
    • pp.33-33
    • /
    • 2001
  • 본 논문에서는 단일 글꼴에 의존하는 원형 패턴 벡터(circular pattern vectors)를 이용하여 위치 이동, 크기 변화 그리고 회전에 무관한 새로운 인쇄체 한글 인식 알고리즘을 제안한다. 제안한 알고리즘은 2진 형태론(binary morphology)을 이용하여 입력 문자에 존재하는 잡음(noise)을 제거한 후, 원형 패턴벡터를 추출한다. 추출된 원형 패턴 벡터는 주어진 문자의 무게 중심을 원의 중심으로 하여 그린 여러 원주 상에 위치한 공간적인 분포 값을 나타내는 것이다. 마지막으로, 실험 문자는 기준 원형 패턴 벡터와 실험 원형 패턴 벡터간의 거리가 최소가 되는 기준 문자로 인식하게 된다. 제안한 알고리즘의 성능을 평가하기 위해, 크기 변화와 회전 변형이 있는 완성형 바탕체 한글 2,350자를 대상으로 모의 실험을 수행하였다. 제안한 알고리즘은 기존의 고리 투영 알고리즘보다 크기 변화와 회전 변형이 있는 한글 인식에 있어서 우수함을 보였다.

신경회로망을 이용한 인쇄체 한글 문자의 인식 (The Recognition of Printed Korean Characters by a Neural Network)

  • 김상우;전윤호;최종호
    • 대한전자공학회논문지
    • /
    • 제27권2호
    • /
    • pp.65-72
    • /
    • 1990
  • 이 논문에서는 인쇄체 한글문자 인식에 있어서 신경회로망의 적용가능성을 알아 보았다. 한글 문자수의 과다와 그들 사이의 유사성, 많은 입력 영상 데이타 등으로 인하여 신경회로망을 한글인식에 적용시키는데는 많은 난점이 따른다. 한글 문자의 이진영상은 신경회로망의 입력으로 사용하기에는 그 데이타 수가 너무 많으므로 입력 영상으로부터 DC 성분을 추출하여 이것을 신경회로망의 입력으로 사용하기 위한 전처리과정을 두었다. 출력층은 한글의 특성에 맞도록 구성하였다. 한글인식에 도입된 신경회로망은 다층인식자이고, 적용된 훈련방법은 BEP 알고리듬을 한글인식에 적절하도록 변형시킨 형태이다. 이 방법을 통하여 정위치에 있는 2,300개 이상의 문자를 인식할 수 있었다. 이 결과로부터 신경회로망을 이용한 인쇄체 한글문자 인식은 적절한 방법임을 알 수 있다.

  • PDF

Path Following 에 의한 자모추출 한글인식 Algorithm (Hangul Recognition Using The Path Following Algorithm)

  • 황도찬;김성식
    • 산업공학
    • /
    • 제3권2호
    • /
    • pp.53-62
    • /
    • 1990
  • 본 연구는 컴퓨터에 의한 인쇄체 한글의 인식방법을 제안하고 있다. 일반적인 인식방법에서는 세선화과정 후의 이미지를 처리하고 있으나, 본 연구는 이 과정을 거치지 않고 원 이미지로부터 직업 패턴점들을 찾아내고, 이들을 이용하여 획을 결정하고 자모를 분리하였다. 문자 판별시에는 한글 의사 결정 나무(Decision-Tree)를 이용하여 자소를 분리하고 판별하였다. 본 연구는 자형에 관계없는 인식 방법을 제안 하였으므로 필기체 한글 인식에 기초를 제공하게 된다.

  • PDF

경계선 기울기 방법을 이용한 다양한 인쇄체 한글의 인식 (Recognition of Various Printed Hangul Images by using the Boundary Tracing Technique)

  • 백승복;강순대;손영선
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.357-360
    • /
    • 2002
  • 본 논문에서는 CCD 흑백 카메라를 이용하여 입력되는 인쇄체 한글 이미지의 문자를 인식하여 편집 가능한 텍스트 문서로 변환하는 시스템을 구현하였다. 문자 인식에 있어서 잡음에 강한 경계선 기울기 방법을 이용함으로써 문자의 구조적 특성에 근거한 윤곽선 정보를 추출할 수 있었다. 이를 이용하여 각 문자 이미지의 수평 및 수직 모음을 인지하고 6가지 유형으로 분류한 후, 자소 단위로 분리하고 최대 길이투영을 사용하여 모음을 인식하였다 분리된 자음은 경계선이 변화되는 위상의 형태를 미리 저장된 표준패턴과 비교하여 인식하였다. 인식된 문자는 KS 한글 완성형 코드로 문서 편집기에 출력되어 사용자에 제공되는 시스템을 구현하였다.

계층적 신경망을 이용한 다중크기의 다중활자체 한글문자인식 (Multi-font/multi-size Hangul Character Recognition with Hierarchical Neural Networks)

  • 권재욱;조성배;김진형
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1990년도 제2회 한글 및 한국어정보처리 학술대회
    • /
    • pp.183-190
    • /
    • 1990
  • 본 논문에서는 인쇄체 한글문자를 실용적으로 인식하기 위하여 고안된 계층적 신경망을 소개하고, 이를 다중활자체의 한글문자를 인식하는 문제에 적용하였다. 이 신경망은 입력된 문자영상을 6가지의 유형으로 분류한 후, 해당 유형을 처리하는 신경망에서 실제 문자를 인식하도록 구성되었다. 또한 각 신경망을 모든 입력영상의 모든 출력노드에 대해 고르게 학습시키기 위하여 Backpropagation 알고리즘을 개선한 Descending Epsilon 알고리즘을 도입하였다. 그 결과 사용빈도수가 높은 한글 520자에 대해 94.4 - 98.4%의 인식률을 얻음으로써 본 논문에서 제안한 시스템이 다양한 활자체로 이루어진 실제 문서인식시스템의 문자인식부에 효과적으로 사용될 수 있음을 제시하였다.

  • PDF

낱자 인식기와 자소 조합 인식기를 혼용한 인쇄체 한글 인식방법 (A Method of Machine-Printed Hangul Recognition using Character and Combined-Grapheme Recognizers)

  • 장승익;임길택;김호연;정선화;남윤석
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.244-246
    • /
    • 2003
  • 본 논문에서는 낱자 인식기와 자소 조합 인식기를 혼용한 저품질 인쇄체 한글의 고성능 인식 방법을 제안하였다. 제안한 방법에서는 입력 문자를 한글 6형식과 기타 형식의 문자, 총 7종으로 분류한, 입력문자를 인식 대상 문자의 수와 자소 복잡도에 따라 하나 또는 두 개의 인식 단위(HRU: Hangul recognition unit)로 분리하여 인식한다. 각 인식 단위 영상에서 추출한 방향각 특징을 다층신경망 인식기를 이용하여 인식한다. 다음으로, 각 다층신경망 인식기의 신뢰도를 조합하여 최종 인식 결과를 도출한다. 제안한 방법을 사용한 실험에서 98.80%의 인식률을 얻을 수 있었으며, 이는 기존 방법에 비해 23.61%의 오류가 감소한 것이다.

  • PDF