• Title/Summary/Keyword: 한글문서 정보

Search Result 572, Processing Time 0.027 seconds

Customizing a Pattern-based English-Korean MT System: From Written Style to Spoken Style (문어체에서 대화체 문장 패턴기반 영한 번역기로의 특화)

  • Cho, Sung-Kwon;Lee, Ki-Young;Roh, Yoon-Hyung;Kwon, Oh-Woog;Kim, Young-Gil
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.136-140
    • /
    • 2010
  • 본 논문은 지식경제부의 지원 하에 한국전자통신연구원 언어처리연구팀에서 2010년에 개발하고 있는 패턴기반 영한 메신저 대화체 문장 번역 시스템에 관한 것이다. 본 논문의 목표는 문어체 문장 위주의 패턴기반 영한 웹문서 자동번역 시스템을 대화체 문장 위주의 패턴기반 영한 메신저 자동번역 시스템으로 전환하고자 할 때, 특화하는 방법 및 모듈에 관해 기술하는 것이다. 영어권 Native speaker로부터 수집한 메신저 대화체 문장을 대상으로 번역률을 평가한 결과, 문어체 위주의 영한 웹 자동번역 시스템은 71.83%인 반면, 대화체 위주의 영한 메신저 자동번역 시스템은 76.88%였다. 대화체 문장을 대상으로 번역률을 5.05% 향상시킬 수 있었던 이유는 본 논문에서 제시한 특화 방법을 따른 결과라고 할 수 있다.

  • PDF

Coreference Resolution Pipeline Model using Mention Boundaries and Mention Pairs in Dialogues (대화 데이터셋에서 멘션 경계와 멘션 쌍을 이용한 상호참조해결 파이프라인 모델)

  • Damrin Kim;Seongsik Park;Harksoo Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.307-312
    • /
    • 2022
  • 상호참조해결은 주어진 문서에서 멘션을 추출하고 동일한 개체의 멘션들을 군집화하는 작업이다. 기존 상호참조해결 연구의 멘션탐지 단계에서 진행한 가지치기는 모델이 계산한 점수를 바탕으로 순위화하여 정해진 비율의 멘션만을 상호참조해결에 사용하기 때문에 잘못 예측된 멘션을 입력하거나 정답 멘션을 제거할 가능성이 높다. 또한 멘션 탐지와 상호참조해결을 종단간 모델로 진행하여 학습 시간이 오래 걸리고 모델 복잡도가 높은 문제가 존재한다. 따라서 본 논문에서는 상호참조해결을 2단계 파이프라인 모델로 진행한다. 첫번째 멘션 탐지 단계에서 후보 단어 범위의 점수를 계산하여 멘션을 예측한다. 두번째 상호참조해결 단계에서는 멘션 탐지 단계에서 예측된 멘션을 그대로 이용해서 서로 상호참조 관계인 멘션 쌍을 예측한다. 실험 결과, 2단계 학습 방법을 통해 학습 시간을 단축하고 모델 복잡도를 축소하면서 종단간 모델과 유사한 성능을 유지하였다. 상호참조해결은 Light에서 68.27%, AMI에서 48.87%, Persuasion에서 69.06%, Switchboard에서 60.99%의 성능을 보였다.

  • PDF

Masked language modeling-based Korean Data Augmentation Techniques Using Label Correction (정답 레이블을 고려한 마스킹 언어모델 기반 한국어 데이터 증강 방법론)

  • Myunghoon Kang;Jungseob Lee;Seungjun Lee;Hyeonseok Moon;Chanjun Park;Yuna Hur;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.485-490
    • /
    • 2022
  • 데이터 증강기법은 추가적인 데이터 구축 혹은 수집 행위 없이 원본 데이터셋의 양과 다양성을 증가시키는 방법이다. 데이터 증강기법은 규칙 기반부터 모델 기반 방법으로 발전하였으며, 최근에는 Masked Language Modeling (MLM)을 응용한 모델 기반 데이터 증강 연구가 활발히 진행되고 있다. 그러나 기존의 MLM 기반 데이터 증강 방법은 임의 대체 방식을 사용하여 문장 내 의미 변화 가능성이 큰 주요 토큰을 고려하지 않았으며 증강에 따른 레이블 교정방법이 제시되지 않았다는 한계점이 존재한다. 이러한 문제를 완화하기 위하여, 본 논문은 레이블을 고려할 수 있는 Re-labeling module이 추가된 MLM 기반 한국어 데이터 증강 방법론을 제안한다. 제안하는 방법론을 KLUE-STS 및 KLUE-NLI 평가셋을 활용하여 검증한 결과, 기존 MLM 방법론 대비 약 89% 적은 데이터 양으로도 baseline 성능을 1.22% 향상시킬 수 있었다. 또한 Gate Function 적용 여부 실험으로 제안 방법 Re-labeling module의 구조적 타당성을 검증하였다.

  • PDF

Korean Coreference Resolution at the Morpheme Level (형태소 수준의 한국어 상호참조해결 )

  • Kyeongbin Jo;Yohan Choi;Changki Lee;Jihee Ryu;Joonho Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.329-333
    • /
    • 2022
  • 상호참조해결은 주어진 문서에서 상호참조해결 대상이 되는 멘션(mention)을 식별하고, 동일한 개체(entity)를 의미하는 멘션들을 찾아 그룹화하는 자연어처리 태스크이다. 최근 상호참조해결에서는 BERT를 이용하여 단어의 문맥 표현을 얻은 후, 멘션 탐지와 상호참조해결을 동시에 진행하는 End-to-End 모델이 주로 연구가 되었다. 그러나 End-to-End 방식으로 모델을 수행하기 위해서는 모든 스팬을 잠재적인 멘션으로 간주해야 되기 때문에 많은 메모리가 필요하고 시간 복잡도가 상승하는 문제가 있다. 본 논문에서는 서브 토큰을 다시 단어 단위로 매핑하여 상호참조해결을 수행하는 워드 레벨 상호참조해결 모델을 한국어에 적용하며, 한국어 상호참조해결의 특징을 반영하기 위해 워드 레벨 상호참조해결 모델의 토큰 표현에 개체명 자질과 의존 구문 분석 자질을 추가하였다. 실험 결과, ETRI 질의응답 도메인 평가 셋에서 F1 69.55%로, 기존 End-to-End 방식의 상호참조해결 모델 대비 0.54% 성능 향상을 보이면서 메모리 사용량은 2.4배 좋아졌고, 속도는 1.82배 빨라졌다.

  • PDF

Mention Detection and Coreference Resolution Pipeline Model for Dialogue Data (대화 데이터를 위한 멘션 탐지 및 상호참조해결 파이프라인 모델)

  • Kim, Damrin;Kim, Hongjin;Park, Seongsik;Kim, Harksoo
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.264-269
    • /
    • 2021
  • 상호참조해결은 주어진 문서에서 상호참조해결의 대상이 될 수 있는 멘션을 추출하고, 같은 개체를 의미하는 멘션 쌍 또는 집합을 찾는 자연어처리 작업이다. 하나의 멘션 내에 멘션이 될 수 있는 다른 단어를 포함하는 중첩 멘션은 순차적 레이블링으로 해결할 수 없는 문제가 있다. 본 논문에서는 이러한 문제를 해결하기 위해 멘션의 시작 단어의 위치를 여는 괄호('('), 마지막 위치를 닫는 괄호(')')로 태깅하고 이 괄호들을 예측하는 멘션 탐지 모델과 멘션 탐지 모델에서 예측된 멘션을 바탕으로 포인터 네트워크를 이용하여 같은 개체를 나타내는 멘션을 군집화하는 상호참조해결 모델을 제안한다. 실험 결과, 4개의 영어 대화 데이터셋에서 멘션 탐지 모델은 F1-score (Light) 94.17%, (AMI) 90.86%, (Persuasion) 92.93%, (Switchboard) 91.04%의 성능을 보이고, 상호참조해결 모델에서는 CoNLL F1 (Light) 69.1%, (AMI) 57.6%, (Persuasion) 71.0%, (Switchboard) 65.7%의 성능을 보인다.

  • PDF

Korean Named Entity Recognition Using BIT Representation (BIT 표기법을 활용한 한국어 개체명 인식)

  • Yoon, Ho;Kim, Chang-Hyun;Cheon, Min-Ah;Park, Ho-Min;Namgoong, Young;Choi, Min-Seok;Kim, Jae-Kyun;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.190-194
    • /
    • 2019
  • 개체명 인식이란 주어진 문서에서 개체명의 범위를 찾고 개체명을 분류하는 것이다. 최근 많은 연구는 신경망 모델을 이용하며 하나 이상의 단어로 구성된 개체명을 BIO 표기법으로 표현한다. BIO 표기법은 개체명이 시작되는 단어의 표지에 B(Beginning)-를 붙이고, 개체명에 포함된 그 외의 단어의 표지에는 I(Inside)-를 붙이며, 개체명과 개체명 사이의 모든 단어의 표지를 O로 간주하는 방법이다. BIO 표기법으로 표현된 말뭉치는 O 표지가 90% 이상을 차지하므로 O 표지에 대한 혼잡도가 높아지는 문제와 불균형 학습 문제가 발생된다. 본 논문에서는 BIO 표기법 대신에 BIT 표기법을 제안한다. BIT 표기법이란 BIO 표기법에서 O 표지를 T(Tag) 표지로 변환하는 방법이며 본 논문에서 T 표지는 품사 표지를 나타낸다. 실험을 통해서 BIT 표기법이 거의 모든 경우에 성능이 향상됨을 확인할 수 있었다.

  • PDF

Construction of Evaluation-Annotated Datasets for EA-based Clothing Recommendation Chatbots (패션앱 후기글 평가분석에 기반한 의류 검색추천 챗봇 개발을 위한 학습데이터 EVAD 구축)

  • Choi, Su-Won;Hwang, Chang-Hoe;Yoo, Gwang-Hoon;Nam, Jee-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.467-472
    • /
    • 2021
  • 본 연구는 패션앱 후기글에 나타나는 구매자의 의견에 대한 '평가분석(Evaluation Analysis: EA)'을 수행하여, 이를 기반으로 상품의 검색 및 추천을 수행하는 의류 검색추천 챗봇을 개발하는 LICO 프로젝트의 언어데이터 구축의 일환으로 수행되었다. '평가분석 트리플(EAT)'과 '평가기반요청 쿼드러플(EARQ)'의 구성요소들에 대한 주석작업은, 도메인 특화된 단일형 핵심어휘와 다단어(MWE) 핵심패턴들을 FST 방식으로 구조화하는 DECO-LGG 언어자원에 기반하여 반자동 언어데이터 증강(SSP) 방식을 통해 진행되었다. 이 과정을 통해 20여만 건의 후기글 문서(230만 어절)로 구성된 EVAD 평가주석데이터셋이 생성되었다. 여성의류 도메인의 평가분석을 위한 '평가속성(ASPECT)' 성분으로 14가지 유형이 분류되었고, 각 '평가속성'에 연동된 '평가내용(VALUE)' 쌍으로 전체 35가지의 {ASPECT-VALUE} 카테고리가 분류되었다. 본 연구에서 구축된 EVAD 평가주석 데이터의 성능을 평가한 결과, F1-Score 0.91의 성능 평가를 획득하였으며, 이를 통해 향후 다른 도메인으로의 확장된 적용 가능성이 유효함을 확인하였다.

  • PDF

A study on the Automatic Generation of Conversational QA Corpora (대화형 질의응답 말뭉치 자동 생성에 대한 연구)

  • Hwang, Seonjeong;Lee, Gary Geunbae
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.133-138
    • /
    • 2021
  • 최근 다양한 분야에서 자동 고객 응대 시스템을 도입하고 있으며 이에 따른 대화형 질의응답 시스템 연구의 필요성이 증가하고 있다. 본 논문에서는 새로운 도메인의 대화형 질의응답 시스템 구축에 필요한 말뭉치를 자동으로 생성하는 대화형 질의-응답 생성 시스템을 소개한다. 또한 이전 대화 내용을 고려하여 문서로부터 사용자의 다음 질문 대상이 될만한 응답 후보를 추출하는 맥락 관련 응답 추출 과제와 이에 대한 성능 평가 지표인 Sequential F1 점수를 함께 제안한다. 대화형 질의응답 말뭉치인 CoQA에 대해 응답 후보 추출 실험을 진행한 결과 기존의 응답 추출 모델보다 우리의 맥락 관련 응답 추출 모델이 Sequential F1 점수에서 31.1 높은 성능을 보였다. 또한 맥락 관련 응답 추출 모듈과 기존에 연구된 대화형 질의 생성 모듈을 결합하여 개발한 대화형 질의-응답 생성 시스템을 통해 374,260 쌍의 질의-응답으로 구성된 대화형 질의응답 말뭉치를 구축하였다.

  • PDF

Atomic Unit-based Post Editing for Hallucination Reduction (환각 현상 완화를 위한 단위 사실 기반 사후 교정)

  • Yonghwan Lee;Jeongwan Shin;Hyun-Je Song
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.222-227
    • /
    • 2023
  • 환각 현상이란 LLM이 생성 태스크에서 사실이 아닌 내용을 생성하거나 근거가 없는 내용을 생성하는 현상을 말한다. 환각 현상은 LLM이 생성한 출력물에 대한 사용자의 신뢰를 떨어뜨리기 때문에 환각을 완화할 수 있는 방법이 필요하다. 최근 사후 편집 모델 중 하나인 RARR는 입력 텍스트를 질문들 순서에 따라 순차적으로 편집하여 환각을 완화하였지만 이전 단계의 편집 오류가 전파되거나 같은 작업을 반복하는 등의 단점이 있었다. 본 논문은 환각 현상 완화를 위한 단위 사실 기반 사후 교정을 제안한다. 제안한 방법은 입력 텍스트를 단위 사실로 분해하고 각 사실에 대응하는 질문을 생성한 후 검색된 관련 문서로 환각 여부를 판단한다. 환각이라 판단되면 편집을 수행하여 환각을 완화한다. 병렬적으로 편집을 진행하기 때문에 기존 연구의 순차적인 오류 전파 문제를 해결하고 기존 연구에 비해 더 빠른 사후 편집을 진행할 수 있다. 실험 결과, 제안 방법이 RARR보다 Preservation Score, 원문과의 사실성 일치여부, 의도 보존 여부에서 모두 우수한 성능을 보인다.

  • PDF

Analyzing Vulnerable Software Code Using Dynamic Taint and SMT Solver (동적오염분석과 SMT 해석기를 이용한 소프트웨어 보안 취약점 분석 연구)

  • Kim, Sungho;Park, Yongsu
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.3
    • /
    • pp.257-262
    • /
    • 2015
  • As software grows more complex, it contains more bugs that are not recognized by developers. Attackers can then use exploitable bugs to penetrate systems or spread malicious code. As a representative method, attackers manipulated documents or multimedia files in order to make the software engage in unanticipated behavior. Recently, this method has gained frequent use in A.P.T. In this paper, an automatic analysis method to find software security bugs was proposed. This approach aimed at finding security bugs in the software which can arise from input data such as documents or multimedia. Through dynamic taint analysis, how input data propagation to vulnerable code occurred was tracked, and relevant instructions in relation to input data were found. Next, the relevant instructions were translated to a formula and vulnerable input data were found via the formula using an SMT solver. Using this approach, 6 vulnerable codes were found, and data were input to crash applications such as HWP and Gomplayer.