• Title/Summary/Keyword: 한글문서

Search Result 625, Processing Time 0.024 seconds

Customizing a Pattern-based English-Korean MT System: From Written Style to Spoken Style (문어체에서 대화체 문장 패턴기반 영한 번역기로의 특화)

  • Cho, Sung-Kwon;Lee, Ki-Young;Roh, Yoon-Hyung;Kwon, Oh-Woog;Kim, Young-Gil
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.136-140
    • /
    • 2010
  • 본 논문은 지식경제부의 지원 하에 한국전자통신연구원 언어처리연구팀에서 2010년에 개발하고 있는 패턴기반 영한 메신저 대화체 문장 번역 시스템에 관한 것이다. 본 논문의 목표는 문어체 문장 위주의 패턴기반 영한 웹문서 자동번역 시스템을 대화체 문장 위주의 패턴기반 영한 메신저 자동번역 시스템으로 전환하고자 할 때, 특화하는 방법 및 모듈에 관해 기술하는 것이다. 영어권 Native speaker로부터 수집한 메신저 대화체 문장을 대상으로 번역률을 평가한 결과, 문어체 위주의 영한 웹 자동번역 시스템은 71.83%인 반면, 대화체 위주의 영한 메신저 자동번역 시스템은 76.88%였다. 대화체 문장을 대상으로 번역률을 5.05% 향상시킬 수 있었던 이유는 본 논문에서 제시한 특화 방법을 따른 결과라고 할 수 있다.

  • PDF

Design of automatic translation system for hangul's romanization Based on the World Wide Web (웹 기반하의 국어의 로마자 표기 자동 변환 시스템 설계)

  • 김홍섭
    • Journal of the Korea Society of Computer and Information
    • /
    • v.6 no.4
    • /
    • pp.6-11
    • /
    • 2001
  • After automatic translation system for hangul's romanization based on the World Wide Web converting korean-word. sentence, document to Transliteration letters by applying algorithm based phonological principles. even though a user do not know the basic principles of the usage of Korean-to-Romanization notations. It refers to corresponding character table that has been currently adopted the authority's standard proposition for Korean-to-Romanization notation rule concurrently, add to make possible to convert a machinized code as well. It Provides font for toggling Korean-English mode, insert-edit mode by assigning ASCII codes are hardly used to them. This program could be made in C++ programming language and Unified Modeling Language to implement various font. font-expanding and condensing, alternative printing.

  • PDF

The design and implementation of automatic translation system for hangul's romanization (국어 로마자 표기 자동 변환 시스템 설계 및 구현)

  • 김홍섭
    • KSCI Review
    • /
    • v.2 no.1
    • /
    • pp.45-54
    • /
    • 1995
  • This study is, by assigning ASCII codes hardly used to Bandaljum(ˇ) and making the fonts of Korean-English character mode, to design the way of converting automatically a word, a sentence or a document of korean into phonetic letters by applying the algorismized phonological principles inputted as a letter string, even though a user do not konw the basic principles of the usage of Korean-to-Romanization notation rule. This is designed so that it may be possible to turn into a mechanical code with reference to the corresponding character in the table of Korean-to-Romanization notation rule that is the currently used standard proposition of the government. Consequently this program makes it user more convenient in the manipulations of special case words, the assistance of colorful-screen or pull-down, pop-up menu and the adoptation of utilizable mouse works for a user convienency. This program could be installed in a single diskette of 5.25"(2HD) and be made in C programming language to mplement various font, expansion or condense of font, alternative printing.ting.

  • PDF

Dialogue Relation Extraction using Dialogue Graph (상호참조 정보와 대화 그래프를 활용한 대화 관계추출 모델)

  • Jungwoo Lim;Junyoung Son;Jinsung Kim;Yuna Hur;Jaehyung Seo;Yoonna Jang;JeongBae Park;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.385-390
    • /
    • 2022
  • 관계추출은 문서 혹은 문장에서 자동으로 엔티티들간의 관계를 추출하는 기술로, 비정형 데이터를 정형데이터로 변환하기에 자연어 처리 중에서도 중요한 분야중 하나이다. 그 중에서도 대화 관계추출은 기존의 문장 단위의 관계추출과는 다르게 긴 길이에 비해 적은 정보의 양, 빈번하게 등장하는 지시대명사 등의 특징을 가지고 있어 주어와 목적어 사이의 관계를 예측하기에 어려움이 있었다. 본 연구에서는 이러한 어려움을 극복하기 위해 대화의 특성을 고려한 대화 그래프를 구축하고 이를 이용한 모델을 제안한다. 제안하는 모델은 상호참조 정보와 문맥정보를 더 반영한 그래프를 통해 산발적으로 퍼져있는 정보를 효율적으로 수집하고, 지시대명사로 인해 어려워진 중요 발화 파악 능력을 증진시켰다. 또한 이를 실험적으로 보이기 위하여 대화 관계추출 데이터셋에 실험해본 결과, 기존 베이스라인 보다 약 10 % 이상의 높은 F1점수를 달성하였다.

  • PDF

Measurement of Political Polarization in Korean Language Model by Quantitative Indicator (한국어 언어 모델의 정치 편향성 검증 및 정량적 지표 제안)

  • Jeongwook Kim;Gyeongmin Kim;Imatitikua Danielle Aiyanyo;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.16-21
    • /
    • 2022
  • 사전학습 말뭉치는 위키백과 문서 뿐만 아니라 인터넷 커뮤니티의 텍스트 데이터를 포함한다. 이는 언어적 관념 및 사회적 편향된 정보를 포함하므로 사전학습된 언어 모델과 파인튜닝한 언어 모델은 편향성을 내포한다. 이에 따라 언어 모델의 중립성을 평가할 수 있는 지표의 필요성이 대두되었으나, 아직까지 언어 인공지능 모델의 정치적 중립성에 대해 정량적으로 평가할 수 있는 척도는 존재하지 않는다. 본 연구에서는 언어 모델의 정치적 편향도를 정량적으로 평가할 수 있는 지표를 제시하고 한국어 언어 모델에 대해 평가를 수행한다. 실험 결과, 위키피디아로 학습된 언어 모델이 가장 정치 중립적인 경향성을 나타내었고, 뉴스 댓글과 소셜 리뷰 데이터로 학습된 언어 모델의 경우 정치 보수적, 그리고 뉴스 기사를 기반으로 학습된 언어 모델에서 정치 진보적인 경향성을 나타냈다. 또한, 본 논문에서 제안하는 평가 방법의 안정성 검증은 각 언어 모델의 정치적 편향 평가 결과가 일관됨을 입증한다.

  • PDF

Coreference Resolution Pipeline Model using Mention Boundaries and Mention Pairs in Dialogues (대화 데이터셋에서 멘션 경계와 멘션 쌍을 이용한 상호참조해결 파이프라인 모델)

  • Damrin Kim;Seongsik Park;Harksoo Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.307-312
    • /
    • 2022
  • 상호참조해결은 주어진 문서에서 멘션을 추출하고 동일한 개체의 멘션들을 군집화하는 작업이다. 기존 상호참조해결 연구의 멘션탐지 단계에서 진행한 가지치기는 모델이 계산한 점수를 바탕으로 순위화하여 정해진 비율의 멘션만을 상호참조해결에 사용하기 때문에 잘못 예측된 멘션을 입력하거나 정답 멘션을 제거할 가능성이 높다. 또한 멘션 탐지와 상호참조해결을 종단간 모델로 진행하여 학습 시간이 오래 걸리고 모델 복잡도가 높은 문제가 존재한다. 따라서 본 논문에서는 상호참조해결을 2단계 파이프라인 모델로 진행한다. 첫번째 멘션 탐지 단계에서 후보 단어 범위의 점수를 계산하여 멘션을 예측한다. 두번째 상호참조해결 단계에서는 멘션 탐지 단계에서 예측된 멘션을 그대로 이용해서 서로 상호참조 관계인 멘션 쌍을 예측한다. 실험 결과, 2단계 학습 방법을 통해 학습 시간을 단축하고 모델 복잡도를 축소하면서 종단간 모델과 유사한 성능을 유지하였다. 상호참조해결은 Light에서 68.27%, AMI에서 48.87%, Persuasion에서 69.06%, Switchboard에서 60.99%의 성능을 보였다.

  • PDF

Domain adaptation of Korean coreference resolution using continual learning (Continual learning을 이용한 한국어 상호참조해결의 도메인 적응)

  • Yohan Choi;Kyengbin Jo;Changki Lee;Jihee Ryu;Joonho Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.320-323
    • /
    • 2022
  • 상호참조해결은 문서에서 명사, 대명사, 명사구 등의 멘션 후보를 식별하고 동일한 개체를 의미하는 멘션들을 찾아 그룹화하는 태스크이다. 딥러닝 기반의 한국어 상호참조해결 연구들에서는 BERT를 이용하여 단어의 문맥 표현을 얻은 후 멘션 탐지와 상호참조해결을 동시에 수행하는 End-to-End 모델이 주로 연구가 되었으며, 최근에는 스팬 표현을 사용하지 않고 시작과 끝 표현식을 통해 상호참조해결을 빠르게 수행하는 Start-to-End 방식의 한국어 상호참조해결 모델이 연구되었다. 최근에 한국어 상호참조해결을 위해 구축된 ETRI 데이터셋은 WIKI, QA, CONVERSATION 등 다양한 도메인으로 이루어져 있으며, 신규 도메인의 데이터가 추가될 경우 신규 데이터가 추가된 전체 학습데이터로 모델을 다시 학습해야 하며, 이때 많은 시간이 걸리는 문제가 있다. 본 논문에서는 이러한 상호참조해결 모델의 도메인 적응에 Continual learning을 적용해 각기 다른 도메인의 데이터로 모델을 학습 시킬 때 이전에 학습했던 정보를 망각하는 Catastrophic forgetting 현상을 억제할 수 있음을 보인다. 또한, Continual learning의 성능 향상을 위해 2가지 Transfer Techniques을 함께 적용한 실험을 진행한다. 실험 결과, 본 논문에서 제안한 모델이 베이스라인 모델보다 개발 셋에서 3.6%p, 테스트 셋에서 2.1%p의 성능 향상을 보였다.

  • PDF

Masked language modeling-based Korean Data Augmentation Techniques Using Label Correction (정답 레이블을 고려한 마스킹 언어모델 기반 한국어 데이터 증강 방법론)

  • Myunghoon Kang;Jungseob Lee;Seungjun Lee;Hyeonseok Moon;Chanjun Park;Yuna Hur;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.485-490
    • /
    • 2022
  • 데이터 증강기법은 추가적인 데이터 구축 혹은 수집 행위 없이 원본 데이터셋의 양과 다양성을 증가시키는 방법이다. 데이터 증강기법은 규칙 기반부터 모델 기반 방법으로 발전하였으며, 최근에는 Masked Language Modeling (MLM)을 응용한 모델 기반 데이터 증강 연구가 활발히 진행되고 있다. 그러나 기존의 MLM 기반 데이터 증강 방법은 임의 대체 방식을 사용하여 문장 내 의미 변화 가능성이 큰 주요 토큰을 고려하지 않았으며 증강에 따른 레이블 교정방법이 제시되지 않았다는 한계점이 존재한다. 이러한 문제를 완화하기 위하여, 본 논문은 레이블을 고려할 수 있는 Re-labeling module이 추가된 MLM 기반 한국어 데이터 증강 방법론을 제안한다. 제안하는 방법론을 KLUE-STS 및 KLUE-NLI 평가셋을 활용하여 검증한 결과, 기존 MLM 방법론 대비 약 89% 적은 데이터 양으로도 baseline 성능을 1.22% 향상시킬 수 있었다. 또한 Gate Function 적용 여부 실험으로 제안 방법 Re-labeling module의 구조적 타당성을 검증하였다.

  • PDF

Korean Coreference Resolution at the Morpheme Level (형태소 수준의 한국어 상호참조해결 )

  • Kyeongbin Jo;Yohan Choi;Changki Lee;Jihee Ryu;Joonho Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.329-333
    • /
    • 2022
  • 상호참조해결은 주어진 문서에서 상호참조해결 대상이 되는 멘션(mention)을 식별하고, 동일한 개체(entity)를 의미하는 멘션들을 찾아 그룹화하는 자연어처리 태스크이다. 최근 상호참조해결에서는 BERT를 이용하여 단어의 문맥 표현을 얻은 후, 멘션 탐지와 상호참조해결을 동시에 진행하는 End-to-End 모델이 주로 연구가 되었다. 그러나 End-to-End 방식으로 모델을 수행하기 위해서는 모든 스팬을 잠재적인 멘션으로 간주해야 되기 때문에 많은 메모리가 필요하고 시간 복잡도가 상승하는 문제가 있다. 본 논문에서는 서브 토큰을 다시 단어 단위로 매핑하여 상호참조해결을 수행하는 워드 레벨 상호참조해결 모델을 한국어에 적용하며, 한국어 상호참조해결의 특징을 반영하기 위해 워드 레벨 상호참조해결 모델의 토큰 표현에 개체명 자질과 의존 구문 분석 자질을 추가하였다. 실험 결과, ETRI 질의응답 도메인 평가 셋에서 F1 69.55%로, 기존 End-to-End 방식의 상호참조해결 모델 대비 0.54% 성능 향상을 보이면서 메모리 사용량은 2.4배 좋아졌고, 속도는 1.82배 빨라졌다.

  • PDF

Mention Detection and Coreference Resolution Pipeline Model for Dialogue Data (대화 데이터를 위한 멘션 탐지 및 상호참조해결 파이프라인 모델)

  • Kim, Damrin;Kim, Hongjin;Park, Seongsik;Kim, Harksoo
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.264-269
    • /
    • 2021
  • 상호참조해결은 주어진 문서에서 상호참조해결의 대상이 될 수 있는 멘션을 추출하고, 같은 개체를 의미하는 멘션 쌍 또는 집합을 찾는 자연어처리 작업이다. 하나의 멘션 내에 멘션이 될 수 있는 다른 단어를 포함하는 중첩 멘션은 순차적 레이블링으로 해결할 수 없는 문제가 있다. 본 논문에서는 이러한 문제를 해결하기 위해 멘션의 시작 단어의 위치를 여는 괄호('('), 마지막 위치를 닫는 괄호(')')로 태깅하고 이 괄호들을 예측하는 멘션 탐지 모델과 멘션 탐지 모델에서 예측된 멘션을 바탕으로 포인터 네트워크를 이용하여 같은 개체를 나타내는 멘션을 군집화하는 상호참조해결 모델을 제안한다. 실험 결과, 4개의 영어 대화 데이터셋에서 멘션 탐지 모델은 F1-score (Light) 94.17%, (AMI) 90.86%, (Persuasion) 92.93%, (Switchboard) 91.04%의 성능을 보이고, 상호참조해결 모델에서는 CoNLL F1 (Light) 69.1%, (AMI) 57.6%, (Persuasion) 71.0%, (Switchboard) 65.7%의 성능을 보인다.

  • PDF