Kim, GyeongMin;Lee, DongYub;Hur, YunA;Lim, HeuiSeok
Annual Conference on Human and Language Technology
/
2017.10a
/
pp.267-269
/
2017
대화 시스템(dialogue system)은 사용자의 언어를 이해하고 그 의도를 분석하여 사용자가 원하는 목적을 달성할 수 있게 도와주는 시스템이다. 인간과 비슷한 수준의 대화를 위해서는 대량의 데이터가 필요하며 데이터의 양질에 따라 그 결과가 달라진다. 최근 페이스북에서 End-to-end learning 방식을 기반으로 한 영어로 구성된 식당 예약 학습 대화 데이터셋(The 6 dialog bAbI tasks)을 구축하여 해당 모델에 적용한 연구가 있다. 대화 시스템에서 활용 가능한 연구가 활발히 진행되고 있지만 영어 기반의 데이터와는 다르게 식당 예약 시스템에서 다른 연구자들의 연구 목적으로 공유한 한국어 데이터셋은 아직까지도 미흡하다. 본 논문에서는 페이스북에서 구축한 영어로 구성된 식당 예약 학습 대화 데이터셋을 이용하여 한국어 기반의 식당 예약 대화 시스템에서 활용 가능한 한국어 데이터셋을 구축하고, 일상생활에서 발생 가능한 발화(utterance)에 따른 형태 변화를 통해 한국어 식당 예약 시스템 데이터셋 구축 방법을 제안한다.
Bong-Su Kim;Hye-Jin Jun;Hyun-Kyu Jeon;Hye-in Jung;Jung-Hoon Jang
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.198-204
/
2022
대화 요약은 다중 발화자와 발화문으로 이루어진 멀티턴 형식의 문서에 대해 핵심내용을 추출하거나 생성하는 태스크이다. 대화 요약 모델은 추천, 대화 시스템 등에 콘텐츠, 서비스 기록에 대한 분석을 제공하는 데 유용하다. 하지만 모델 구축에 필요한 한국어 대화 요약 데이터셋에 대한 연구는 부족한 실정이다. 본 논문에서는 생성 기반 대화 요약을 위한 데이터셋을 제안한다. 이를 위해 국내 방송사의 대용량 콘텐츠로 부터 원천 데이터를 수집하고, 주석자가 수작업으로 레이블링 하였다. 구축된 데이터셋 규모는 6개 카테고리에 대해 약 100K이며, 요약문은 단문장, 세문장, 2할문장으로 구분되어 레이블링 되었다. 또한 본 논문에서는 데이터의 특성을 내재화하고 통제할 수 있도록 대화 요약 레이블링 가이드를 제안한다. 이를 기준으로 모델 적합성 검증에 사용될 디코딩 모델 구조를 선정한다. 실험을 통해 구축된 데이터의 몇가지 특성을 조명하고, 후속 연구를 위한 벤치마크 성능을 제시한다. 데이터와 모델은 aihub.or.kr에 배포 되었다.
Hyeongjun Choi;Beomseok Hong;Wonseok Choi;Youngsub Han;Byoung-Ki Jeon;Seung-Hoon Na
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.295-300
/
2023
대화 데이터와 같은 데이터는 사람이 수작업으로 작성해야 하기 때문에 데이터셋 구축에 시간과 비용이 크게 발생한다. 현재 대두되고 있는 Large Language Model은 이러한 대화 생성에서 보다 자연스러운 대화 생성이 가능하다는 이점이 존재한다. 이번 연구에서는 LLM을 통해 사람이 만든 적은 양의 데이터셋을 Fine-tuning 하여 위키백과 문서로부터 데이터셋을 만들어내고, 이를 통해 문서 검색 모델의 성능을 향상시켰다. 그 결과 학습 데이터와 같은 문서집합에서 MRR 3.7%p, 위키백과 전체에서 MRR 4.5%p의 성능 향상을 확인했다.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.213-218
/
2019
기계독해는 자연어로 표현된 질문과 단락이 주어졌을 때, 해당 단락 내에 표현된 정답을 찾는 태스크이다. 최근 기계독해 태스크도 다른 자연어처리 태스크와 유사하게 BERT, XLNet, RoBERTa와 같이 사전에 학습한 언어모델을 이용하고 질문과 단락이 입력되었을 경우 정답의 경계를 추가 학습(fine-tuning)하는 방법이 우수한 성능을 보이고 있으며, 특히 KorQuAD v1.0 데이터셋에서 학습 및 평가하였을 경우 94% F1 이상의 높은 성능을 보이고 있다. 본 논문에서는 현재 최고 수준의 기계독해 기술이 학습셋과 유사한 평가셋이 아닌 일반적인 질문과 단락 쌍에 대해서 가지는 일반화 능력을 평가하고자 한다. 이를 위하여 첫번째로 한국어에 대해서 공개된 KorQuAD v1.0 데이터셋과 NIA v2017 데이터셋, 그리고 엑소브레인 과제에서 구축한 엑소브레인 v2018 데이터셋을 이용하여 데이터셋 간의 교차 평가를 수행하였다. 교차 평가결과, 각 데이터셋의 정답의 길이, 질문과 단락 사이의 오버랩 비율과 같은 데이터셋 통계와 일반화 성능이 서로 관련이 있음을 확인하였다. 다음으로 KorBERT 사전 학습 언어모델과 학습 가능한 기계독해 데이터 셋 21만 건 전체를 이용하여 학습한 기계독해 모델에 대해 블라인드 평가셋 평가를 수행하였다. 블라인드 평가로 일반분야에서 학습한 기계독해 모델의 법률분야 평가셋에서의 일반화 성능을 평가하고, 정답 단락을 읽고 질문을 생성하지 않고 질문을 먼저 생성한 후 정답 단락을 검색한 평가셋에서의 기계독해 성능을 평가하였다. 블라인드 평가 결과, 사전 학습 언어 모델을 사용하지 않은 기계독해 모델 대비 사전 학습 언어 모델을 사용하는 모델이 큰 폭의 일반화 성능을 보였으나, 정답의 길이가 길고 질문과 단락 사이 어휘 오버랩 비율이 낮은 평가셋에서는 아직 80%이하의 성능을 보임을 확인하였다. 본 논문의 실험 결과 기계 독해 태스크는 특성 상 질문과 정답 사이의 어휘 오버랩 및 정답의 길이에 따라 난이도 및 일반화 성능 차이가 발생함을 확인하였고, 일반적인 질문과 단락을 대상으로 하는 기계독해 모델 개발을 위해서는 다양한 유형의 평가셋에서 일반화 평가가 필요함을 확인하였다.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.342-345
/
2023
최근 자연어처리 연구 중 오픈 도메인 지식 기반 대화는 많은 관심을 받고 있다. 연구를 위해서는 오픈 도메인 환경을 갖추고 적절한 지식을 사용한 대화 데이터셋이 필요하다. 지금까지 오픈 도메인 환경을 갖춘 한국어 지식 기반 대화 데이터셋은 존재하지 않아 한국어가 아닌 데이터셋을 한국어로 기계번역하여 연구에 사용하였다. 이를 사용할 경우 두 가지 단점이 존재한다. 먼저 사용된 지식이 한국 문화에 익숙하지 않아 한국인이 쉽게 알 수 없는 대화 내용이 담겨있다. 그리고 번역체가 남아있어 대화가 자연스럽지 않다. 그래서 본 논문에서는 자연스러운 대화체와 대화 내용을 담기 위해 새로운 오픈 도메인 한국어 지식 기반 대화 데이터셋을 구축하였다. 오픈 도메인 환경 구축을 위해 위키백과와 나무위키의 지식을 사용하였고 사용자와 시스템의 발화로 이루어진 1,773개의 대화 세트를 구축하였다. 시스템 발화는 크게 지식을 사용한 발화, 사용자 질문에 대한 답을 주지 못한 발화, 그리고 지식이 포함되지 않은 발화 3가지로 구성된다. 이렇게 구축한 데이터셋을 통해 KE-T5와 Long-KE-T5를 사용하여 간단한 실험을 진행하였다.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.461-464
/
2022
법원도서관이 발간하는 판례공보를 기반으로 판결문 자동요약을 위한 학습 데이터들이 구축되고 있다. 그런데 판결문 요약에서는 뉴스 요약과는 달리 추출요약과 생성요약 방식이 함께 사용되는 특수성이 있고, 이러한 특수성 때문에 현재 판결문 요약 데이터셋이 요약 프로그램의 성능 향상을 이끌지 못하고 있다고 생각된다. 따라서 법률가들이 판결문을 요약하는 방식을 반영하여, 추출요약 방식으로 작성된 판결요지와 생성요약 방식으로 작성된 판결요지를 분리해서 요약 데이터셋을 만들 필요가 있다. 추출요약과 생성요약에 관한 데이터셋을 따로 구축하기 위해서는 판례공보의 판결요지를 추출요약과 생성요약으로 분류하는 작업이 필요한데, 감성 분석에 사용되는 알고리즘이 판결요지의 분류 작업에 응용될 수 있다는 것을 실험 결과로 알 수 있었다.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.207-212
/
2019
본 논문에서는 한국어로 쓰여진 과학기술 논문에 대한 기계독해 과제(일명 KorSciQA)를 제안하고자 하며, 그와 수반하는 데이터 구축 및 평가를 보고한다. 다양한 제약조건이 부가된 크라우드소싱 디자인을 통하여, 498개의 논문 초록에 대해 일관성 있는 품질의 2,490개의 질의응답으로 구성된 기계독해 데이터셋을 구축하였다. 이 데이터셋은 어느 논문에서나 나타나는 논박 요소들인 논의하는 문제, 푸는 방법, 관련 데이터, 모델 등과 밀접한 질문으로 구성되고, 각 논박 요소의 의미, 목적, 이유 파악 및 다양한 추론을 하여 답을 할 수 있는 것이다. 구축된 KorSciQA 데이터셋은 실험을 통하여 기존의 기계독해 모델의 독해력으로는 풀기 어려운 도전과제로 평가되었다.
Jeongho Na;Joung Lee;Seung-Hoon Na;Jeongbeom Jeong;Maengsik Choi;Chunghee Lee
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.14-18
/
2023
본 연구는 한국어 음성-텍스트 데이터에서 보편적으로 나타난 휴지의 실현 양상을 분석하고, 이를 토대로 데이터셋을 선별해 보편적이고 규격화된 한국어 휴지 예측을 위한 모델을 제안하였다. 이를 위해 전문적인 발성 훈련을 받은 성우 등의 발화가 녹음된 음성-텍스트 데이터셋을 수집하고 MFA와 같은 음소 정렬기를 사용해 휴지를 라벨링하는 등의 전처리를 하고, 다양한 화자의 발화에서 공통적으로 나타난 휴지를 선별해 학습데이터셋을 구축하였다. 구축된 데이터셋을 바탕으로 LLM 중 하나인 KULLM 모델을 미세 조정하고 제안한 모델의 휴지 예측 성능을 평가하였다.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.225-231
/
2022
최근 기계번역 분야는 괄목할만한 발전을 보였으나, 번역 결과의 오류가 불완전한 의미의 왜곡으로 이어지면서 사용자로 하여금 불편한 반응을 야기하거나 사회적 파장을 초래하는 경우가 존재한다. 특히나 오역에 의해 변질된 의미로 인한 경제적 손실 및 위법 가능성, 안전에 대한 잘못된 정보 제공의 위험, 종교나 인종 또는 성차별적 발언에 의한 파장은 실생활과 문제가 직결된다. 이러한 문제를 완화하기 위해, 기계번역 품질 예측 분야에서는 치명적 오류 감지(Critical Error Detection, CED)에 대한 연구가 이루어지고 있다. 그러나 한국어에 관련해서는 연구가 존재하지 않으며, 관련 데이터셋 또한 공개된 바가 없다. AI 기술 수준이 높아지면서 다양한 사회, 윤리적 요소들을 고려하는 것은 필수이며, 한국어에서도 왜곡된 번역의 무분별한 증식을 낮출 수 있도록 CED 기술이 반드시 도입되어야 한다. 이에 본 논문에서는 영어-한국어 기계번역 분야에서의 치명적 오류를 감지하는 KoCED(English-Korean Critical Error Detection) 데이터셋을 구축 및 공개하고자 한다. 또한 구축한 KoCED 데이터셋에 대한 면밀한 통계 분석 및 다국어 언어모델을 활용한 데이터셋의 타당성 실험을 수행함으로써 제안하는 데이터셋의 효용성을 면밀하게 검증한다.
Kim, Gyeong-min;Seo, Jaehyung;Lee, Soomin;Lim, Heui-seok
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.439-443
/
2021
기계 독해는 단락과 질의가 주어졌을 때 단락 내 정답을 찾는 자연어 처리 태스크이다. 최근 벤치마킹 데이터셋에서 사전학습 언어모델을 기반으로 빠른 발전을 보이며 특정 데이터셋에서 인간의 성능을 뛰어넘는 성과를 거두고 있다. 그러나 이는 단락 내 범위(span)에서 추출된 정보에 관한 것으로, 실제 연산을 요구하는 질의에 대한 응답에는 한계가 있다. 본 논문에서는 기존 범위 내에서 응답이 가능할 뿐만이 아니라, 연산에 관한 이산 추론을 요구하는 단락 및 질의에 대해서도 응답이 가능한 기계 독해 모델의 효과성을 검증하고자 한다. 이를 위해 영어 DROP (Discrete Reasoning Over the content of Paragraphs, DROP) 데이터셋으로부터 1,794개의 질의응답 쌍을 Google Translator API v2를 사용하여 한국어로 번역 및 정제하여 KoDROP (Korean DROP, KoDROP) 데이터셋을 구축하였다. 단락 및 질의를 참조하여 연산을 수행하기 위한 의미 태그를 한국어 KoBERT 및 KoELECTRA에 접목하여, 숫자 인식이 가능한 KoNABERT, KoNAELECTRA 모델을 생성하였다. 실험 결과, KoDROP 데이터셋은 기존 기계 독해 데이터셋과 비교하여 단락에 대한 더욱 포괄적인 이해와 연산 정보를 요구하였으며, 가장 높은 성능을 기록한 KoNAELECTRA는 KoBERT과 비교하여 F1, EM에서 모두 19.20의 월등한 성능 향상을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.