• Title/Summary/Keyword: 한글데이터셋

Search Result 193, Processing Time 0.033 seconds

Development of Korean Dialogue Dataset for Restaurant Reservation System (식당 예약 대화 시스템 개발을 위한 한국어 데이터셋 구축)

  • Kim, GyeongMin;Lee, DongYub;Hur, YunA;Lim, HeuiSeok
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.267-269
    • /
    • 2017
  • 대화 시스템(dialogue system)은 사용자의 언어를 이해하고 그 의도를 분석하여 사용자가 원하는 목적을 달성할 수 있게 도와주는 시스템이다. 인간과 비슷한 수준의 대화를 위해서는 대량의 데이터가 필요하며 데이터의 양질에 따라 그 결과가 달라진다. 최근 페이스북에서 End-to-end learning 방식을 기반으로 한 영어로 구성된 식당 예약 학습 대화 데이터셋(The 6 dialog bAbI tasks)을 구축하여 해당 모델에 적용한 연구가 있다. 대화 시스템에서 활용 가능한 연구가 활발히 진행되고 있지만 영어 기반의 데이터와는 다르게 식당 예약 시스템에서 다른 연구자들의 연구 목적으로 공유한 한국어 데이터셋은 아직까지도 미흡하다. 본 논문에서는 페이스북에서 구축한 영어로 구성된 식당 예약 학습 대화 데이터셋을 이용하여 한국어 기반의 식당 예약 대화 시스템에서 활용 가능한 한국어 데이터셋을 구축하고, 일상생활에서 발생 가능한 발화(utterance)에 따른 형태 변화를 통해 한국어 식당 예약 시스템 데이터셋 구축 방법을 제안한다.

  • PDF

KMSS: Korean Media Script Dataset for Dialogue Summarization (대화 요약 생성을 위한 한국어 방송 대본 데이터셋 )

  • Bong-Su Kim;Hye-Jin Jun;Hyun-Kyu Jeon;Hye-in Jung;Jung-Hoon Jang
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.198-204
    • /
    • 2022
  • 대화 요약은 다중 발화자와 발화문으로 이루어진 멀티턴 형식의 문서에 대해 핵심내용을 추출하거나 생성하는 태스크이다. 대화 요약 모델은 추천, 대화 시스템 등에 콘텐츠, 서비스 기록에 대한 분석을 제공하는 데 유용하다. 하지만 모델 구축에 필요한 한국어 대화 요약 데이터셋에 대한 연구는 부족한 실정이다. 본 논문에서는 생성 기반 대화 요약을 위한 데이터셋을 제안한다. 이를 위해 국내 방송사의 대용량 콘텐츠로 부터 원천 데이터를 수집하고, 주석자가 수작업으로 레이블링 하였다. 구축된 데이터셋 규모는 6개 카테고리에 대해 약 100K이며, 요약문은 단문장, 세문장, 2할문장으로 구분되어 레이블링 되었다. 또한 본 논문에서는 데이터의 특성을 내재화하고 통제할 수 있도록 대화 요약 레이블링 가이드를 제안한다. 이를 기준으로 모델 적합성 검증에 사용될 디코딩 모델 구조를 선정한다. 실험을 통해 구축된 데이터의 몇가지 특성을 조명하고, 후속 연구를 위한 벤치마크 성능을 제시한다. 데이터와 모델은 aihub.or.kr에 배포 되었다.

  • PDF

Conversation Dataset Generation and Improve Search Performance via Large Language Model (Large Language Model을 통한 대화 데이터셋 자동 생성 및 검색 성능 향상)

  • Hyeongjun Choi;Beomseok Hong;Wonseok Choi;Youngsub Han;Byoung-Ki Jeon;Seung-Hoon Na
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.295-300
    • /
    • 2023
  • 대화 데이터와 같은 데이터는 사람이 수작업으로 작성해야 하기 때문에 데이터셋 구축에 시간과 비용이 크게 발생한다. 현재 대두되고 있는 Large Language Model은 이러한 대화 생성에서 보다 자연스러운 대화 생성이 가능하다는 이점이 존재한다. 이번 연구에서는 LLM을 통해 사람이 만든 적은 양의 데이터셋을 Fine-tuning 하여 위키백과 문서로부터 데이터셋을 만들어내고, 이를 통해 문서 검색 모델의 성능을 향상시켰다. 그 결과 학습 데이터와 같은 문서집합에서 MRR 3.7%p, 위키백과 전체에서 MRR 4.5%p의 성능 향상을 확인했다.

  • PDF

Evaluating Korean Machine Reading Comprehension Generalization Performance using Cross and Blind Dataset Assessment (기계독해 데이터셋의 교차 평가 및 블라인드 평가를 통한 한국어 기계독해의 일반화 성능 평가)

  • Lim, Joon-Ho;Kim, Hyunki
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.213-218
    • /
    • 2019
  • 기계독해는 자연어로 표현된 질문과 단락이 주어졌을 때, 해당 단락 내에 표현된 정답을 찾는 태스크이다. 최근 기계독해 태스크도 다른 자연어처리 태스크와 유사하게 BERT, XLNet, RoBERTa와 같이 사전에 학습한 언어모델을 이용하고 질문과 단락이 입력되었을 경우 정답의 경계를 추가 학습(fine-tuning)하는 방법이 우수한 성능을 보이고 있으며, 특히 KorQuAD v1.0 데이터셋에서 학습 및 평가하였을 경우 94% F1 이상의 높은 성능을 보이고 있다. 본 논문에서는 현재 최고 수준의 기계독해 기술이 학습셋과 유사한 평가셋이 아닌 일반적인 질문과 단락 쌍에 대해서 가지는 일반화 능력을 평가하고자 한다. 이를 위하여 첫번째로 한국어에 대해서 공개된 KorQuAD v1.0 데이터셋과 NIA v2017 데이터셋, 그리고 엑소브레인 과제에서 구축한 엑소브레인 v2018 데이터셋을 이용하여 데이터셋 간의 교차 평가를 수행하였다. 교차 평가결과, 각 데이터셋의 정답의 길이, 질문과 단락 사이의 오버랩 비율과 같은 데이터셋 통계와 일반화 성능이 서로 관련이 있음을 확인하였다. 다음으로 KorBERT 사전 학습 언어모델과 학습 가능한 기계독해 데이터 셋 21만 건 전체를 이용하여 학습한 기계독해 모델에 대해 블라인드 평가셋 평가를 수행하였다. 블라인드 평가로 일반분야에서 학습한 기계독해 모델의 법률분야 평가셋에서의 일반화 성능을 평가하고, 정답 단락을 읽고 질문을 생성하지 않고 질문을 먼저 생성한 후 정답 단락을 검색한 평가셋에서의 기계독해 성능을 평가하였다. 블라인드 평가 결과, 사전 학습 언어 모델을 사용하지 않은 기계독해 모델 대비 사전 학습 언어 모델을 사용하는 모델이 큰 폭의 일반화 성능을 보였으나, 정답의 길이가 길고 질문과 단락 사이 어휘 오버랩 비율이 낮은 평가셋에서는 아직 80%이하의 성능을 보임을 확인하였다. 본 논문의 실험 결과 기계 독해 태스크는 특성 상 질문과 정답 사이의 어휘 오버랩 및 정답의 길이에 따라 난이도 및 일반화 성능 차이가 발생함을 확인하였고, 일반적인 질문과 단락을 대상으로 하는 기계독해 모델 개발을 위해서는 다양한 유형의 평가셋에서 일반화 평가가 필요함을 확인하였다.

  • PDF

OK-KGD:Open-domain Korean Knowledge Grounded Dialogue Dataset (OK-KGD:오픈 도메인 한국어 지식 기반 대화 데이터셋 구축)

  • Seona Moon;San Kim;Jinyea Jang;Minyoung Jeung;Saim Shin
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.342-345
    • /
    • 2023
  • 최근 자연어처리 연구 중 오픈 도메인 지식 기반 대화는 많은 관심을 받고 있다. 연구를 위해서는 오픈 도메인 환경을 갖추고 적절한 지식을 사용한 대화 데이터셋이 필요하다. 지금까지 오픈 도메인 환경을 갖춘 한국어 지식 기반 대화 데이터셋은 존재하지 않아 한국어가 아닌 데이터셋을 한국어로 기계번역하여 연구에 사용하였다. 이를 사용할 경우 두 가지 단점이 존재한다. 먼저 사용된 지식이 한국 문화에 익숙하지 않아 한국인이 쉽게 알 수 없는 대화 내용이 담겨있다. 그리고 번역체가 남아있어 대화가 자연스럽지 않다. 그래서 본 논문에서는 자연스러운 대화체와 대화 내용을 담기 위해 새로운 오픈 도메인 한국어 지식 기반 대화 데이터셋을 구축하였다. 오픈 도메인 환경 구축을 위해 위키백과와 나무위키의 지식을 사용하였고 사용자와 시스템의 발화로 이루어진 1,773개의 대화 세트를 구축하였다. 시스템 발화는 크게 지식을 사용한 발화, 사용자 질문에 대한 답을 주지 못한 발화, 그리고 지식이 포함되지 않은 발화 3가지로 구성된다. 이렇게 구축한 데이터셋을 통해 KE-T5와 Long-KE-T5를 사용하여 간단한 실험을 진행하였다.

  • PDF

Method to improve the Quality of Training Data for Automatic Summarization of Judgments (판결문 자동요약을 위한 학습 데이터의 품질 개선방안)

  • Sang-Young Go
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.461-464
    • /
    • 2022
  • 법원도서관이 발간하는 판례공보를 기반으로 판결문 자동요약을 위한 학습 데이터들이 구축되고 있다. 그런데 판결문 요약에서는 뉴스 요약과는 달리 추출요약과 생성요약 방식이 함께 사용되는 특수성이 있고, 이러한 특수성 때문에 현재 판결문 요약 데이터셋이 요약 프로그램의 성능 향상을 이끌지 못하고 있다고 생각된다. 따라서 법률가들이 판결문을 요약하는 방식을 반영하여, 추출요약 방식으로 작성된 판결요지와 생성요약 방식으로 작성된 판결요지를 분리해서 요약 데이터셋을 만들 필요가 있다. 추출요약과 생성요약에 관한 데이터셋을 따로 구축하기 위해서는 판례공보의 판결요지를 추출요약과 생성요약으로 분류하는 작업이 필요한데, 감성 분석에 사용되는 알고리즘이 판결요지의 분류 작업에 응용될 수 있다는 것을 실험 결과로 알 수 있었다.

  • PDF

KorSciQA: A Dataset for Machine Comprehension of Korean Scientific Paper (KorSciQA: 한국어 논문의 기계독해 데이터셋)

  • Hahm, Younggyun;Jeong, Youngbin;Jeong, Heeseok;Hwang, Hyekyong;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.207-212
    • /
    • 2019
  • 본 논문에서는 한국어로 쓰여진 과학기술 논문에 대한 기계독해 과제(일명 KorSciQA)를 제안하고자 하며, 그와 수반하는 데이터 구축 및 평가를 보고한다. 다양한 제약조건이 부가된 크라우드소싱 디자인을 통하여, 498개의 논문 초록에 대해 일관성 있는 품질의 2,490개의 질의응답으로 구성된 기계독해 데이터셋을 구축하였다. 이 데이터셋은 어느 논문에서나 나타나는 논박 요소들인 논의하는 문제, 푸는 방법, 관련 데이터, 모델 등과 밀접한 질문으로 구성되고, 각 논박 요소의 의미, 목적, 이유 파악 및 다양한 추론을 하여 답을 할 수 있는 것이다. 구축된 KorSciQA 데이터셋은 실험을 통하여 기존의 기계독해 모델의 독해력으로는 풀기 어려운 도전과제로 평가되었다.

  • PDF

A Study on Korean Pause Prediction based Large Language Model (대규모 언어 모델 기반 한국어 휴지 예측 연구)

  • Jeongho Na;Joung Lee;Seung-Hoon Na;Jeongbeom Jeong;Maengsik Choi;Chunghee Lee
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.14-18
    • /
    • 2023
  • 본 연구는 한국어 음성-텍스트 데이터에서 보편적으로 나타난 휴지의 실현 양상을 분석하고, 이를 토대로 데이터셋을 선별해 보편적이고 규격화된 한국어 휴지 예측을 위한 모델을 제안하였다. 이를 위해 전문적인 발성 훈련을 받은 성우 등의 발화가 녹음된 음성-텍스트 데이터셋을 수집하고 MFA와 같은 음소 정렬기를 사용해 휴지를 라벨링하는 등의 전처리를 하고, 다양한 화자의 발화에서 공통적으로 나타난 휴지를 선별해 학습데이터셋을 구축하였다. 구축된 데이터셋을 바탕으로 LLM 중 하나인 KULLM 모델을 미세 조정하고 제안한 모델의 휴지 예측 성능을 평가하였다.

  • PDF

KoCED: English-Korean Critical Error Detection Dataset (KoCED: 윤리 및 사회적 문제를 초래하는 기계번역 오류 탐지를 위한 학습 데이터셋)

  • Sugyeong Eo;Suwon Choi;Seonmin Koo;Dahyun Jung;Chanjun Park;Jaehyung Seo;Hyeonseok Moon;Jeongbae Park;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.225-231
    • /
    • 2022
  • 최근 기계번역 분야는 괄목할만한 발전을 보였으나, 번역 결과의 오류가 불완전한 의미의 왜곡으로 이어지면서 사용자로 하여금 불편한 반응을 야기하거나 사회적 파장을 초래하는 경우가 존재한다. 특히나 오역에 의해 변질된 의미로 인한 경제적 손실 및 위법 가능성, 안전에 대한 잘못된 정보 제공의 위험, 종교나 인종 또는 성차별적 발언에 의한 파장은 실생활과 문제가 직결된다. 이러한 문제를 완화하기 위해, 기계번역 품질 예측 분야에서는 치명적 오류 감지(Critical Error Detection, CED)에 대한 연구가 이루어지고 있다. 그러나 한국어에 관련해서는 연구가 존재하지 않으며, 관련 데이터셋 또한 공개된 바가 없다. AI 기술 수준이 높아지면서 다양한 사회, 윤리적 요소들을 고려하는 것은 필수이며, 한국어에서도 왜곡된 번역의 무분별한 증식을 낮출 수 있도록 CED 기술이 반드시 도입되어야 한다. 이에 본 논문에서는 영어-한국어 기계번역 분야에서의 치명적 오류를 감지하는 KoCED(English-Korean Critical Error Detection) 데이터셋을 구축 및 공개하고자 한다. 또한 구축한 KoCED 데이터셋에 대한 면밀한 통계 분석 및 다국어 언어모델을 활용한 데이터셋의 타당성 실험을 수행함으로써 제안하는 데이터셋의 효용성을 면밀하게 검증한다.

  • PDF

Reading Comprehension requiring Discrete Reasoning Over Paragraphs for Korean (단락에 대한 이산 추론을 요구하는 한국어 기계 독해)

  • Kim, Gyeong-min;Seo, Jaehyung;Lee, Soomin;Lim, Heui-seok
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.439-443
    • /
    • 2021
  • 기계 독해는 단락과 질의가 주어졌을 때 단락 내 정답을 찾는 자연어 처리 태스크이다. 최근 벤치마킹 데이터셋에서 사전학습 언어모델을 기반으로 빠른 발전을 보이며 특정 데이터셋에서 인간의 성능을 뛰어넘는 성과를 거두고 있다. 그러나 이는 단락 내 범위(span)에서 추출된 정보에 관한 것으로, 실제 연산을 요구하는 질의에 대한 응답에는 한계가 있다. 본 논문에서는 기존 범위 내에서 응답이 가능할 뿐만이 아니라, 연산에 관한 이산 추론을 요구하는 단락 및 질의에 대해서도 응답이 가능한 기계 독해 모델의 효과성을 검증하고자 한다. 이를 위해 영어 DROP (Discrete Reasoning Over the content of Paragraphs, DROP) 데이터셋으로부터 1,794개의 질의응답 쌍을 Google Translator API v2를 사용하여 한국어로 번역 및 정제하여 KoDROP (Korean DROP, KoDROP) 데이터셋을 구축하였다. 단락 및 질의를 참조하여 연산을 수행하기 위한 의미 태그를 한국어 KoBERT 및 KoELECTRA에 접목하여, 숫자 인식이 가능한 KoNABERT, KoNAELECTRA 모델을 생성하였다. 실험 결과, KoDROP 데이터셋은 기존 기계 독해 데이터셋과 비교하여 단락에 대한 더욱 포괄적인 이해와 연산 정보를 요구하였으며, 가장 높은 성능을 기록한 KoNAELECTRA는 KoBERT과 비교하여 F1, EM에서 모두 19.20의 월등한 성능 향상을 보였다.

  • PDF