• Title/Summary/Keyword: 한국 지형학회

Search Result 7,562, Processing Time 0.034 seconds

Error Analysis of Waterline-based DEM in Tidal Flats and Probabilistic Flood Vulnerability Assessment using Geostatistical Simulation (지구통계학적 시뮬레이션을 이용한 수륙경계선 기반 간석지 DEM의 오차 분석 및 확률론적 침수 취약성 추정)

  • KIM, Yeseul;PARK, No-Wook;JANG, Dong-Ho;YOO, Hee Young
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.4
    • /
    • pp.85-99
    • /
    • 2013
  • The objective of this paper is to analyze the spatial distribution of errors in the DEM generated using waterlines from multi-temporal remote sensing data and to assess flood vulnerability. Unlike conventional research in which only global statistics of errors have been generated, this paper tries to quantitatively analyze the spatial distribution of errors from a probabilistic viewpoint using geostatistical simulation. The initial DEM in Baramarae tidal flats was generated by corrected tidal level values and waterlines extracted from multi-temporal Landsat data in 2010s. When compared with the ground measurement height data, overall the waterline-based DEM underestimated the actual heights and local variations of the errors were observed. By applying sequential Gaussian simulation based on spatial autocorrelation of DEM errors, multiple alternative error distributions were generated. After correcting errors in the initial DEM with simulated error distributions, probabilities for flood vulnerability were estimated under the sea level rise scenarios of IPCC SERS. The error analysis methodology based on geostatistical simulation could model both uncertainties of the error assessment and error propagation problems in a probabilistic framework. Therefore, it is expected that the error analysis methodology applied in this paper will be effectively used for the probabilistic assessment of errors included in various thematic maps as well as the error assessment of waterline-based DEMs in tidal flats.

The Climatic Change during the Historical Age inferred from Vegetation Environment in Alpine Moorsin the Korean Peninsula (한반도 고산습지의 식생환경과 역사시대 기후변화)

  • Yoon, Soon-Ock;Kim, Minji;Hwang, Sangill
    • Journal of The Geomorphological Association of Korea
    • /
    • v.21 no.4
    • /
    • pp.69-83
    • /
    • 2014
  • This study examines vegetation and climate changes from pollen compositions of alpine moors in the Korean Peninsula such as Mujechineup at Mt. Jeongjok, Yongneup at Mt. Daeam, Jilmoineup at Mt. Odae and Wangdeungjaeneup at Mt. Jiri including moors at Mt. Jeombong. It can be found that the alpine moors were less interfered by human than low moors during the past 2,000 years of the historical age. Based on dominant periods of Pinus and Quercus, pollen compositions of the alpine wetlands, climatic environments of vegetation and historical records, vegetation and climate changes during three periods such as approximately 2,000~1,000 yr BP, 1,000~400 yr BP and 400 yr BP~present are examined. It was warmer during the period of 1,000~400 yr BP than 2,000~1,000 yr BP. The period of approximately 400 yr BP indicate the coldest climate of Little Ice Age. This study finds dominances of Quercus, low NAP/AP ratios, obvious divisions of pollen zones and human interference after 400 yr BP from pollen compositions of the alpine moors during the historical age. Human interference in the high moors becomes obvious after approximately 400 yr BP, indicating that there is a time lack of approximately 1,500~2,000 years between the alpine and low moors.

Research on the Spatio-temporal Distribution Pattern of Temperature Using GIS in Korea Peninsular (GIS를 이용한 한반도 기온의 시·공간적 분포패턴에 관한 연구)

  • KIM, Nam-Shin
    • Journal of The Geomorphological Association of Korea
    • /
    • v.15 no.2
    • /
    • pp.85-94
    • /
    • 2008
  • This study is to construe spatio-temporal characteristics of temperature in cities and changes of climatical regions in analyzing a change of Korea Peninsular climate. We used daily mean air temperature data which was collected in South and North Korea for the past 34 years from 1974 to 2007. We created temperature map of 500m resolution using Inverse Distance Weight in application with adiabatic lapse rate per month in linear relation with height and temperature. In the urbanization area, the data analyzed population in comparison with temperature changes by the year. An annual rising rate of temperature was calculated $0.0056^{\circ}C$, and the temperature was increased $2.14^{\circ}C$ from 1974 to 2107. The south climate region in Korea by the Warmth index was expanded to the middle climate region by the latitude after 1990s. A rise of urban area in mean temperature was $0.5-1.2^{\circ}C$, Seoul, metropolitan and cities which were high density of urbanization and industrialization with the population increase between 1980s and 1990s. In case of North Korea, Cities were Pyeongyang, Anju, Gaecheon, Hesan. A rise in cities areas in mean temperature has influence on vegetation, especially secondary growth such as winter buds of pine trees appears built-up area and outskirts in late Autumn. Finally, nowaday we confront diverse natural events over climatical changes, We need a long-term research to survey and analyze an index on the climatical changes to present a systematic approach and solution in the future.

Evaluation of Air Ion According to the Type of Ridge in Urban Park -Focused on Tangeumdae Park in ChungJu- (도심 산지형 공원 능선부 식생유형에 따른 공기이온 평가 - 충주시 탄금대 공원을 대상으로 -)

  • Kim, Jeong Ho;Lee, Sang Hoon;Yoon, Yong Han
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.5
    • /
    • pp.587-595
    • /
    • 2019
  • This study analyzed the influence of the environmental factor of each vegetation type in an urban, mountainous park (Tangeumdae Park in Chungju) on air ion. The measuring points were divided according to the tree species, diameter at breast height, crown density, and layered structure, and the meteorological factors and the air ion were measured. The results of the measurement showed the average generation of positive ions of $610.90{\pm}50.27ea/cm^3$, the average generation of negative ions of $723.58{\pm}64.25ea/cm^3$, and the air ion index of $1.19{\pm}0.10$. The results of the analysis, according to the vegetation type, are as follows. Firstly, the air ion varied according to the species, the chest diameter at breast height, and the layered structure, and was analyzed to be statistically significant. Secondly, the air ion and the vegetation type showed a positive correlation with the species, diameter at breast height, crown density, and layered structure. The cation showed a negative correlation with the species, diameter at breast height, and the crown density, and the anion showed a positive correlation with the species, the diameter at breast height, crown density, and layered structure. Thirdly, the ion index in ridges had a higher correlation with the vegetation type than the meteorological factors. In detail, the correlation was higher in the species > layered structure > crown density > diameter at breast height. This study had the limitation of evaluating air ions in the ridge. Therefore, future studies on air ion should consider both terrain structure and vegetation type and analyze the seasonal changes and comparison.

Effects of the Site-Specific Nitrogen Management on Economic Feasibility and Environmental Sustainability (토양특성(土壤特性)에 따른 질소시용(窒素施用)의 환경(環境) 경제적(經濟的) 효과(效果))

  • Kang, Choong-Kwan;Park, Joo-Sub;Lee, Sang-Yong;Kim, Han-Myeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.1
    • /
    • pp.42-54
    • /
    • 2001
  • The use of nitrogen fertilizer in intensive agricultural production is of major concern due to its role on agricultural productivity and water quality. Crop production inputs on farm are usually applied at a uniform rate across an entire field. However, actual input requirements often vary within fields. The field variations in yield potential, soil moisture, soil N status, and the efficiency of fertilizer use, uniform application of crop production inputs does not allow optimum efficiency or profitability. This occurs because uniform application often results in areas of over- and under-application which may affect water quality and crop yield. This study used biophysical and economic models to assess the economic feasibility and water quality benefits of site specific nitrogen management for 10 soil types and 35 sample fields in Goodwater Creek watershed located near Centralia, Missouri. Results showed that the economic feasibility and water quality benefits of variable rate application were sensitive to the distribution of soil types within a field. Variable rate(VR) application was not uniformly more profitable than uniform rate(UR) application for the four agricultural systems evaluated and the water quality benefits were insubstantial relative to uniform application of N.

  • PDF

Response of Microbial Distribution to Soil Properties of Orchard Fields in Jeonbuk Area (전북지역 과수원의 토양특성이 미생물 분포에 미치는 영향)

  • Ahn, Byung-Koo;Kim, Hyo-Jin;Han, Seong-Soo;Lee, Young-Han;Lee, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.696-701
    • /
    • 2011
  • This study was conducted to investigate impacts of soil properties on microbial distribution in Jeonbuk orchard fields. Soil samples were collected from 110 sites cultivated with different fruit plants. The population of aerobic bacteria and fungi and the content of soil microbial biomass carbon (C) were found to increase with increasing silt content in the soils. Different activity of dehydrogenase was not observed among the different textures of soil. Microbial distribution, amount of microbial biomass C, and dehydrogenase activity in the soils were not significantly different among the topographic sites. However, in pear and grape fruit plant fields, coliform group of bacteria was found in relatively higher population, $133.0{\times}10^3\;CFU\;g^{-1}$ and $107.4{\times}10^3\;CFU\;g^{-1}$, respectively. Microbial groups were simplified and their density was reduced with increasing the cultivation periods of fruit plants. The soil microbial distribution was proportionally correlated with some of soil properties such as soil pH, soil organic matter (SOM) content, and exchangeable Mg content; in particular, the population of Bacillus sp. was proportionally correlated with soil pH and exchangeable Mg content. The amounts of microbial biomass C and the dehydrogenase activity in the soils were significantly correlated with the contents of SOM and exchangeable Ca ion (p<0.01).

Soil Organic Carbon Dynamics in Korean Paddy Soils (우리나라 논 토양의 토양유기탄소 변동 특성)

  • Jung, Won-Kyo;Kim, Sun-Kwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.36-42
    • /
    • 2007
  • Korean paddy soils have long been almost uniformly managed throughout the whole country with flooded, deep tillage, puddlling, transplanting, and uncovering after harvest. Management of soil organic carbon could be more important in the sources of green house gases. However, soil organic carbon dynamics were not been studied for Korean paddy soils. Therefore, we evaluated the changes in soil organic carbon (SOC) of paddy soils between 1999 and 2003 at the same locations nationwide except islands. Soil organic carbon tends to increase in Inceptisols, which is predominant soil order for Korean paddy soils, from 1999 to 2003. Soil organic carbon increases in topographically plain paddy soils was greater than in valley soils, and was considerably high in predominant types of paddy soils (i.e., well adapted paddy soils, sandy paddy soils, and poorly drained paddy soils) but low and stable in the saline paddy soils. We also found that clay paddy soils are greater in soil organic carbon than sandy paddy soils. Through this study, we concluded that a proper management of paddy soils could contribute to soil organic carbon storage, which imply that the Korean paddy soils could help to enhance carbon dioxide sequestration via soil organic matter into the soil.

A Study on Appropriate Tree Species and Crops for Agroforestry Using an Ecological Geographic Map of North Korea (북한의 생태지리구획을 활용한 임농복합경영 적정 수종 및 작물 고찰 연구)

  • Park, Sohee;Lim, Joongbin;Kim, Eun-hee;Yang, A-Ram
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.3
    • /
    • pp.355-368
    • /
    • 2021
  • This study aims to identify appropriate tree species and crops for agroforestry target sites in North Korea based on ecological geography and site properties. To this end, an ecological geographic map (13 regions and 4 zones) of North Korea was made using satellite images and North Korean academic journal articles. The target agroforestry sites were selected and mapped according to 18 site conditions depending on 3 site characteristics, and the sites were divided into short-term and long-term target sites depending on the agroforestry management period. Finally, optimal combinations of 30 tree species and 19 crops were selected by overlapping the ecological geographic map and agroforestry target site map. For regions within the same zone, tree species and crops were almost similar; however, compared to regions in other zones, they differed. This is likely because the geographical climatic characteristics reflected in the ecological geographic map vary greatly from zone to zone. These results will be used to propose a combination of suitable tree species and crops that takes into account both management purposes and management types for inter-Korean forest cooperation in the agroforestry sector.

Transforming a Buffer Green into an Urban Park as Multi-functional Green Infrastructure - A Case of the Buffer Green of Sinmae Market in Daegu, Korea - (입체적 도시기반시설로서 완충녹지의 공원화 계획 - 대구광역시 신매시장 완충녹지 공원화 계획을 사례로 -)

  • Kim, Miyeun;Min, Byoungwook
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.2
    • /
    • pp.101-112
    • /
    • 2021
  • In Korea, efforts have been made continuously to improve the environment of traditional markets concerning the issues of urban regeneration. In particular, many old cities and traditional markets face a lack of parking spaces. As a solution to this, attempts are being made to prepare underground parking spaces by designing urban planning facilities in three-dimensional ways and utilizing the upper part as a more meaningful space. This study is about the master plan to use the upper green area while creating an underground parking lot at 571 Sinmae-dong, Suseong-gu, Daegu. This green area was defined as a space with dual values, 'defensive green space' that needs to be ecologically protected, and 'active cultural space' where walking flows to the market and various events are concentrated. Three specific design strategies to balance these values were presented. First, to prevent indiscriminate occupation and damage by people and maintain a healthy green environment, securing the maximum amount of undivided green space in the site was suggested. Second, a space layout and a topography and planting patterns that can overcome the morphological characteristics of narrow and long-shaped sites enable the experience of abundant green spaces. Third, providing space to strengthen the connections with nearby urban facilities such as Sinmae Market and Gosan Library can also intensively accommodate cultural activities in various cities. This study has academic significance in providing implications for urban regeneration projects with similar contexts in the future.

The Pigments Variation of Phytoplankton in the Seomjin and Yeongsan River estuary (섬진강과 영산강 하구의 식물플랑크톤 기원 색소분포 변동)

  • Jeon, Hyeji;Lee, Eugene;Son, Moonho
    • Journal of Marine Life Science
    • /
    • v.5 no.2
    • /
    • pp.99-106
    • /
    • 2020
  • To investigate effect of variation in physiochemical conditions due to river discharge on phytoplankton, field surveys were conducted in the Seomjin and Yeongsan River estuaries from April to November 2016. The concentrations of DIN and DSi in Seomjin River estuary were gradually low as distance from upstream. On the other hands, the concentrations of DIN and DSi in Yeongsan River estuary were critically high at upstream, due to which is characterized as semi-enclosed eutrophic area. A total of 12 phytoplankton pigments were analyzed, and the distribution of each taxa was investigated using indicator for each phytoplankton taxa. Fucoxanthin, an indicator pigment of diatoms, showed an average of 0.61±1.00 ㎍ l-1 and 0.76±1.22 ㎍ l-1 in the Seomjin and Yeongsan River estuaries, respectively. Concentration of fucoxanthin was more than twice that of other pigments except chlorophyll a., indicating that diatoms were dominant taxa. Peridinin, an indicator pigment of dinoflagellate, showed some similar tendency to the microscopic observation, but mismatch results were also present, indicating a technical limitation of pigment analysis. Chlorophyll b, alloxanthin, and zeaxanthin, which are indicator pigments of green algae, cryptomonads, and cyanobacteria, were detected in both estuaries even though those taxa were not detected in microscopic observation. This indicates that the two estuaries were affected by freshwater species. Here, we can suggest that phytoplankton composition in estuary was directly influenced by the inflow from upstream. In particular, the phytoplankton population dynamics in Yeongsan River estuary was greatly associated with a large-scale artificial dyke, especially in summer rainy season. On the other hands, the seasonal and horizontal distribution of phytoplankton in Seomjin River estuary has changed along the salinity gradients and inflow-related changes.