• Title/Summary/Keyword: 한국 지형학회

Search Result 7,571, Processing Time 0.038 seconds

Determination of Fire Severity and Deduction of Influence Factors Through Landsat-8 Satellite Image Analysis - A Case Study of Gangneung and Donghae Forest Fires - (Landsat-8 위성영상 분석을 통한 산불피해 심각도 판정 및 영향 인자 도출 - 강릉, 동해 산불을 사례로 -)

  • Soo-Dong Lee;Gyoung-Sik Park;Chung-Hyeon Oh;Bong-Gyo Cho;Byeong-Hyeok Yu
    • Korean Journal of Environment and Ecology
    • /
    • v.38 no.3
    • /
    • pp.277-292
    • /
    • 2024
  • In order to manage large-scale forest fires concentrated in Gangwon-do and Gyeongsangbuk-do with severe topographical heterogeneity, a decision-making process through efficient and rapid damage assessment using satellite images is essential. Accordingly, this study targets a large-scale forest fire that ignited in Gangneung and the Donghae, Gangwon-do on March 5, 2022, and was extinguished around 19:00 on March 8, to estimate the fire severity using dNBR and derive environmental factors that affect the grade. As environmental factors, we quantified the regular vegetation index representing vegetation or fuel type, the forest index that classifies tree species, the regular moisture index representing moisture content, and DEM in relation to topography, and then analyzed the correlation with the fire severity. In terms of fire severity, the widest range was 'Unbured' at 52.4%, followed by low severity at 42.9%, medium-low severity at 4.3%, and medium-high severity at 0.4%. Environmental factors showed a negative correlation with dNDVI and dNDWI, and a positive correlation with slope. Regarding vegetation, the differences between coniferous, broad-leaved, and other groups in dNDVI, dNIWI, and slope, which were analyzed to affect the fire severity, were analyzed to be significant with p-value < 2.2e-16. In particular, the difference between coniferous and broad-leaved forests was clear, and it was confirmed that coniferous forest suffered more damage than broad-leaved forest due to the higher fire severity in the Gangwon-do region, including Pinus densiflora, which are dominant species, as well as P. koraiensis, P. rigida and P. thunbergii.

Distributional Characteristics of Escherichia coli and Water Pollution in Gwangyang Bay and Jinhae Bay, Korea (광양만과 진해만에서 대장균 Escherichia coli분포와 수질오염 특성)

  • Son, Moon-Ho;Baek, Seung-Ho;Joo, Hae-Mi;Jang, Pung-Guk;Kim, Young-Ok
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.3
    • /
    • pp.162-170
    • /
    • 2011
  • In order to assess the inorganic and organic pollutents characteristics in marine water, we investigated COD (Chemical Oxygen Demand), Chlorophyll a and Escherichia coli during four seasons at 20 stations of Gwangyang Bay and at 23 stations of Jinhae Bay, Korea. The bay is divided into three zones in Gwangyang and four zones in Jinhae respectively, based on the pollutent levels. In Gwangyang Bay, the high concentration (mean 4.7 mg $L^{-1)$) of COD was recorded during spring season at Zone I, which can be characterized as a semi-enclosed eutrophic area (St. 1~9). Also, Chl. a concentrations were high at Zone I (mean 14.0 ${\mu}g\;L^{-1}$). The colony of E. coli were detected during summer season at Zone II, which is influenced by Seomjin River water. The E. coli may have been entered from the river water in a large pulse during rainy season. On the other hand, E. coli was kept low levels during four seasons at the Zone III, which is influenced indirectly by surface water currents from offshore of the bay. In Jinhae Bay, the high COD and Chl. a were shown during all seasons at Zone I, which is characteristed by semi-enclosed eutrophic area of Masan and Haengam bays. The Zone I also had been shown relatively high E. coli concentration in all seasons. In constrast, other three zones did not show seasonal characteristics of the E. coli concentrations. The present study suggests that E. coli concentrations can be significantly elevated in eutrophic semi-enclosed area.

Development and Evaluation of Traffic Conflict Criteria at an intersection (교차로 교통상충기준 개발 및 평가에 관한 연구)

  • 하태준;박형규;박제진;박찬모
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.2
    • /
    • pp.105-115
    • /
    • 2002
  • For many rears, traffic accident statistics are the most direct measure of safety for a signalized intersection. However it takes more than 2 or 3 yearn to collect certain accident data for adequate sample sizes. And the accident data itself is unreliable because of the difference between accident data recorded and accident that is actually occurred. Therefore, it is rather difficult to evaluate safety for a intersection by using accident data. For these reasons, traffic conflict technique(TCT) was developed as a buick and accurate counter-measure of safety for a intersection. However, the collected conflict data is not always reliable because there is absence of clear criteria for conflict. This study developed objective and accurate conflict criteria, which is shown below based on traffic engineering theory. Frist, the rear-end conflict is regarded, when the following vehicle takes evasive maneuver against the first vehicle within a certain distance, according to car-following theory. Second, lane-change conflict is regarded when the following vehicle takes evasive maneuver against first vehicle which is changing its lane within the minimum stopping distance of the following vehicle. Third, cross and opposing-left turn conflicts are regarded when the vehicle which receives green sign takes evasive maneuver against the vehicle which lost its right-of-way crossing a intersection. As a result of correlation analysis between conflict and accident, it is verified that the suggested conflict criteria in this study ave applicable. And it is proven that estimating safety evaluation for a intersection with conflict data is possible, according to the regression analysis preformed between accident and conflict, EPDO accident and conflict. Adopting the conflict criteria suggested in this study would be both quick and accurate method for diagnosing safety and operational deficiencies and for evaluation improvements at intersections. Further research is required to refine the suggested conflict criteria to extend its application. In addition, it is necessary to develope other types of conflict criteria, not included in this study, in later study.

Growth and Fresh Bulb Weight Model in Harvest Time of Southern Type Garlic Var. 'Namdo' based on Temperature (온도에 따른 난지형 마늘 '남도'의 생육과 수확기 구생체중 모델 개발)

  • Wi, Seung Hwan;Moon, Kyung Hwan;Song, Eun Young;Son, In Chang;Oh, Soon Ja;Cho, Young Yeol
    • Journal of Bio-Environment Control
    • /
    • v.26 no.1
    • /
    • pp.13-18
    • /
    • 2017
  • This study was conducted to investigate optimal temperature of garlic and develop bulb weight model in harvest time. Day and night temperature in chambers was set to $11/7^{\circ}C$, $14/10^{\circ}C$, $17/12^{\circ}C$, $20/15^{\circ}C$, $23/18^{\circ}C$, $28/23^{\circ}C$(16/8h). Bulb fresh and dry weight was heaviest on $20/15^{\circ}C$. In $11/7^{\circ}C$ and $14/10^{\circ}C$, leaf number and total leaf area increased slowly. But in the harvest, leaf number and total leaf area were not significant, except $28/23^{\circ}C$. Models were developed with fresh bulb weight. As a result of analyzing the model, $18{\sim}20^{\circ}C$ certified optimal mean temperature. And the growing degree day base temperature estimated $7.1^{\circ}C$, upper temperature threshold estimated $31.7^{\circ}C$. To verify the model, mean temperature on temperature gradient tunnel applied to the growth rate model. Lineal function model, quadric model, and logistic distribution model showed 79.0~95.0%, 77.2~92.3% and 85.0~95.8% accuracy, respectively. Logistic distribution model has the highest accuracy and good for explaining moderate temperature, growing degree day base temperature and upper temperature threshold.

Assessment of Site Environmental Factors on the Structure of Forest Vegetation in Naejang-san National Park Using Canonical Correlation Analysis (정준상관분석을 통한 내장산국립공원 산림식생구조의 입지환경 평가)

  • Kim, Tae-Geun;Cho, Young-Hwan;Oh, Jang-Geun
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.4
    • /
    • pp.561-569
    • /
    • 2013
  • This study examines locational environment factors that may affect the vegetation structure in the forests of Naejang National Park. To that end, we selected LAI (Leaf Area Index), diameter at breast height, and tree height as structural variables as well as altitude above sea level, gradient, slope direction, soil moisture, topographic location, and amount of solar radiation as locational environment factors, using the method of canonical correlation analysis in order to find out correlation between them. As to the simple correlation between the locational environment factors and structural variables, the correlation coefficient was relatively low (0.6). The values of LAI, measured along the ridge with higher altitudes, decreased as the soil moisture and solar radiation increased. However, LAI increased as the gradient increased and the slope direction faced the north (farther from the east). In respect of the diameter at breast height, the diameter decreased as the altitude and gradient increased. But the diameter increased as the moisture and solar radiation increased. The tree height decreased as the moisture increased and the site was closer to the ridge. These various correlations show a variety of locational environment factors in the national park, implying that the structural variables are affected by complex locational environment factors. This study conducted a canonical correlation analysis on locational environment factors which may affect the vegetation structure, and the result showed that LAI increased and tree height & diameter at breast height decreased as the solar radiation & moisture decreased and altitude increased. Although more factors that may affect vegetation structure (e.g. climate) should be taken into account, this study is significant in that the vegetation structure, which can adapt to more unfavorable conditions in terms of solar radiation, moisture, and higher altitudes, could be inferred in a statistical way. The results of this study, especially the locational environment factors based on DEM, can be used for assessing diversity of vegetation structure in a forest and for monitoring the structure in a national park on a regular basis so as to establish more effective maintenance plans of a park.

Habitat Distribution Change Prediction of Asiatic Black Bears (Ursus thibetanus) Using Maxent Modeling Approach (Maxent 모델을 이용한 반달가슴곰의 서식지 분포변화 예측)

  • Kim, Tae-Geun;Yang, DooHa;Cho, YoungHo;Song, Kyo-Hong;Oh, Jang-Geun
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.3
    • /
    • pp.197-207
    • /
    • 2016
  • This study aims at providing basic data to objectively evaluate the areas suitable for reintroduction of the species of Asiatic black bear (Ursus thibetanus) in order to effectively preserve the Asiatic black bears in the Korean protection areas including national parks, and for the species restoration success. To this end, this study predicted the potential habitats in East Asia, Southeast Asia and India, where there are the records of Asiatic black bears' appearances using the Maxent model and environmental variables related with climate, topography, road and land use. In addition, this study evaluated the effects of the relevant climate and environmental variables. This study also analyzed inhabitation range area suitable for Asiatic black and geographic change according to future climate change. As for the judgment accuracy of the Maxent model widely utilized for habitat distribution research of wildlife for preservation, AUC value was calculated as 0.893 (sd=0.121). This was useful in predicting Asiatic black bears' potential habitat and evaluate the habitat change characteristics according to future climate change. Compare to the distribution map of Asiatic black bears evaluated by IUCN, Habitat suitability by the Maxent model were regionally diverse in extant areas and low in the extinct areas from IUCN map. This can be the result reflecting the regional difference in the environmental conditions where Asiatic black bears inhabit. As for the environment affecting the potential habitat distribution of Asiatic black bears, inhabitation rate was the highest, according to land coverage type, compared to climate, topography and artificial factors like distance from road. Especially, the area of deciduous broadleaf forest was predicted to be preferred, in comparison with other land coverage types. Annual mean precipitation and the precipitation during the driest period were projected to affect more than temperature's annual range, and the inhabitation possibility was higher, as distance was farther from road. The reason is that Asiatic black bears are conjectured to prefer more stable area without human's intervention, as well as prey resource. The inhabitation range was predicted to be expanded gradually to the southern part of India, China's southeast coast and adjacent inland area, and Vietnam, Laos and Malaysia in the eastern coastal areas of Southeast Asia. The following areas are forecast to be the core areas, where Asiatic black bears can inhabit in the Asian region: Jeonnam, Jeonbuk and Gangwon areas in South Korea, Kyushu, Chugoku, Shikoku, Chubu, Kanto and Tohoku's border area in Japan, and Jiangxi, Zhejiang and Fujian border area in China. This study is expected to be used as basic data for the preservation and efficient management of Asiatic black bear's habitat, artificially introduced individual bear's release area selection, and the management of collision zones with humans.

Weathering Sensitivity Characterization for Rock Slope, Considering Time Dependent Strength Changes (시간에 따른 강도변화를 고려한 암반사면의 풍화민감특성 분석)

  • Lee Jeong-Sang;Bae Seong-Ho;Yu Yeong-Il;Oh Joung-Bae;Lee Du-Hwa;Park Joon-Young
    • Tunnel and Underground Space
    • /
    • v.16 no.2 s.61
    • /
    • pp.109-134
    • /
    • 2006
  • Rocks undergo weathering processes influenced by changing in pressure-temperature condition, atmosphere, underground water, and rainfall. The weathering processes change physical and chemical characteristics of the rocks. Once the rocks are weathered, the characteristics of them are changed and, because of the changing, several disadvantages such as rock slope failures and underground water spouts are can occur. Before we cut a large rock slope, therefore, we must analyze current weathering conditions of rocks and predict weathering processes in the future. Through the results of such analyses, we can judge reinforcement works. In order to comply with such requests, chemical weathering sensitivity analysis which was analyzed from chemical weathering velocities and other characteristics of rocks has been applied in several prior construction works in Korea. But, It is defective to use directly in engineering fields because it was developed for soils(not rocks), it has too mny factors must be considered and the relationships between the factors are not clear, and it is hard to explain the weathering processes in engineering time range. Besides above, because it has been used for isotropic rocks, this method is hard to apply to anisotropic rocks such as sedimentary rocks. Acceding to studies from morphologists (e.g. Oguchi et al., 1994; Sunamura, 1996; Norwick and Dexter, 2002), time dependent strength reduction influenced by weathering shows a negative exponential function form. Appling this relation, one can synthesize the factors which influence the weathering processes to the strength reduction, and get meaningful estimates in engineering viewpoint. We suggest this weathering sensitivity characterization method as a technique that can explain time dependent weathering sensitivity characteristics through strength changes and can directly applied the rock slope design.

The Forming Process of the Maisan and Nearby Famous Mountains and the Related Mountain Ranges and Water Systems (마이산과 주변 명산의 형성과정과 그에 관련된 산맥과 수계 변화)

  • Oh, Changwhan;Lee, Seunghwan;Lee, Boyoung
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.201-219
    • /
    • 2017
  • The Jinan Basin which includes Maisan locates in the central part of the northern boundary of the Yeongnam Massif. The basement rocks of the Jinan Basin and surrounding area are Precambrian gneiss and Mesozoic granite which were exposed on the surface before Cretaceous. The Jinan Basin, one of the Cretaceous pull-apart basins in South Korea, formed along the Yongdong-Gwangju fault system. Maisan is composed of conglomerate deposited in the eastern slope of the Jinan Basin showing the shape of horse ears and the unusual topography where many tafonies were developed. The strike slip fault that caused the Jinan Basin was connected to the deep depth so that the magma formed at 200 km depth could have extruded on the surface causing active volcanic activity in and around the Jinan basin. As a result, Cheonbansan composed of pyroclastic rocks, Gubongsan consisting of volcanic neck and WoonilamBanilam formed by the lava flow, appear around Maisan forming a specific terrain. After the formation of the Jinan Basin and surrounding volcanic rocks, they uplifted to form mountains including Masian; the uplifting time may be ca. 69-38 Ma. At this time, the Noryeong mountain range may be formed in the regions which extended from Chugaryeong through Muju and Jinan to Hampyeong dividing the Geumgang and Seomjingang water systems. Due to the ecological barrier, the Noryeong mountain range, Coreoleuciscus splendidus living in the Geumgang water systems was differentiated from that in the Soemjingang water system. In addition, the Geumgang and Mangyeong-Dongjingang water systems were separated by the Unjangsan, which developed in the NNW direction. As a result, diverse ecosystem have been established in and around Maisan and at the same time, diverse cultural and historical resources related to Maisan's unique petrological features, were also established. Therefore, Maisan and surrounding area can be regarded as a place where a geotourism can be successfully established by combining the ecological, cultural and historical resources with a geological heritage. Therefore Maisan and surrounding areas have a high possibility to be a National Geopark and UNESCO Global Geopark.

Geological History and Landscapes of the Juwangsan National Park, Cheongsong (국립공원 주왕산의 지질과정과 지형경관)

  • Hwang, Sang Koo;Son, Young Woo;Choi, Jang Oh
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.235-254
    • /
    • 2017
  • We investigate the geological history that formed geology and landscapes of the Juwangsan National Park and its surrounding areas. The Juwangsan area is composed of Precambrian gneisses, Paleozoic metasedimentary rocks, Permian to Triassic plutonic rocks, Early Mesozoic sedimentary rocks, Late Mesozoic plutonic and volcanic rocks, Cenozoic Tertiary rhyolites and Quaternary taluses. The Precambrian gneisses and Paleozoic metasedimentary rocks of the Ryeongnam massif occurs as xenolithes and roof-pendents in the Permian to Triassic Yeongdeok and Cheongsong plutonic rocks, which were formed as the Songrim orogeny by magmatic intrusions occurring in a subduction environment under the northeastern and western parts of the area before a continental collision between Sino-Korean and South China lands. The Cheongsong plutonic rocks were intruded by the Late Triassic granodiorite, which include to be metamorphosed as an orthogneiss. The granodiorite includes geosites of orbicular structure and mineral spring. During the Cretaceous, the Gyeongsang Basin and Gyeongsang arc were formed by a subduction of the Izanagi plate below East Asia continent in the southeastern Korean Peninsula. The Gyeongsang Basin was developed to separate into Yeongyang and Cheongsong subbasins, in which deposited Dongwach/Hupyeongdong Formation, Gasongdong/Jeomgok Formation, and Dogyedong/Sagok Formation in turn. There was intercalated by the Daejeonsa Basalt in the upper part of Dogyedong Formation in Juwangsan entrance. During the Late Cretaceous 75~77 Ma, the Bunam granitoid stock, which consists of various lithofacies in southwestern part, was made by a plutonism that was mixing to have an injection of mafic magma into felsic magma. During the latest Cretaceous, the volcanic rocks were made by several volcanisms from ubiquitous andesitic and rhyolitic magmas, and stratigraphically consist of Ipbong Andesite derived from Dalsan, Jipum Volcanics from Jipum, Naeyeonsan Tuff from Cheongha, Juwangsan Tuff from Dalsan, Neogudong Formation and Muposan Tuff. Especially the Juwangsan Tuff includes many beautiful cliffs, cayon, caves and falls because of vertical columnar joints by cooling in the dense welding zone. During the Cenozoic Tertiary, rhyolite intrusions formed lacolith, stocks and dykes in many sites. Especially many rhyolite dykes make a radial Cheongsong dyke swarm, of which spherulitic rhyolite dykes have various floral patterns. During the Quaternary, some taluses have been developed down the cliffs of Jungtaesan lacolith and Muposan Tuff.

Areal Distribution Ratio and Characteristics of Constituent Rocks with Geologic Age and Rock Type by GIS in Gyeongnam-Ulsan-Busan Areas (GIS를 이용한 경남-울산-부산지역 구성암류의 지질시대별 및 암층별 분포율과 분포특성)

  • Yun, Hyun-Soo;Lee, Jin-Young;Hong, Sei-Sun;Yang, Dong-Yoon;Kim, Ju-Yong;Yi, Sang-Heon
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.39-59
    • /
    • 2011
  • To get the geologic information data such as rock resources, industrial ground, development planning and so on, distribution ratios of constituent rocks with geologic age and rock type were obtained in Gyeongnam, Ulsan and Busan areas by ArcGIS 9.3 program, digital geologic and geomorphic maps of 1 : 250,000 scale. Geologic ages and rock types in the Gyeongnam area can be divided into 6 and 40, respectively. Their distribution ratios of the geologic ages are decreasing in the order of Cretaceous, Precambrian, Quaternary, Jurassic, Triassic and Tertiary. They show the wide ranges of 1.35-57.36%, and the former makes the most dominant ratio. Major rock types are 24 ones, all of which occupy the ratio of 94.58% and relatively narrow ranges of 1.15-13.64% in the area. Among them, andesite and andesitic tuff shows the more or less dominant ratio, and separately develops in the northeast, mid east and south parts of the area. In the Ulsan area, geologic ages and rock types can be divided into 3 and II, respectively. Their distribution ratios of the geologic ages are decreasing in the order of Cretaceous, Quaternary and Triassic. They show the very wide range of 6.90-79.21%, and the former makes the most prevailing ratio. Major rock types are 9 ones, which totally occupy the ratio of 98.63% and more or less wide ranges of 1.50-39.01% in the area. Among them, Jindong formation shows the most dominant ratio, and widely develops in the inner and eastern part of the area. In the Busan area, geologic ages and rock types can be divided into 3 and 10, respectively. Their distribution ratios of the geologic ages are decreasing in the order of Cretaceous, Quaternary and Tertiary. They show the wide ranges of 6.73-47.02%, and the two former makes the most dominant ratio of 88.03%. Major rock types are 6 ones, all of which occupy the ratio of 93.02% and relatively wide ranges of 4.07-47.02% in the area. Among them, alluvium forms the most dominant ratio, which mostly develops in the lower Nagdong River, West Nagdong River and Suyeong River.