• Title/Summary/Keyword: 한국 지형학회

Search Result 7,562, Processing Time 0.038 seconds

A Study on the Quality Improvement of Electrical Master Box in Aircraft Vibration Environment (항공기 진동 환경에서의 전원분배장치 품질개선 연구)

  • Seo, Youngjin;Lee, Yoonwoo;Jang, Minwook;Jo, Jihyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.181-189
    • /
    • 2019
  • An aircraft power distribution device distributes and controls the power generated by the generator and provides overcurrent protection. There are many defect phenomena that make AC power distribution impossible during flight, which poses a problem in because some electronic equipment cannot be operated. We describe a process of deriving the root cause of defects by using vibration testing equipment to simulate the vibration conditions during aircraft flight, which result in defects. The results show that the cause of the defect is internal wiring damage caused by the vibration of the contactor of the AC power distribution device. Therefore, the shape of the contactor was improved to solve this problem. We also improved the test procedure by performing defect detection tests using vibration testing equipment to detect a faulty contactor. As a result of the improvements, a component certification test and flight test proved that the defect phenomena of the AC electrical master box were improved.

Earthquake Damage Assessment of Buildings in Urban Area using Disaster Management Platform (재난관리플랫폼을 이용한 도심지 건물군의 지진피해평가)

  • Jang, Sung-Hyun;Kwon, Dong-Hee;Hwang, Chan-Gyu;Choi, Soo-Young;Chey, Min-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.6
    • /
    • pp.25-31
    • /
    • 2019
  • Because of its physical characteristics, earthquake has a great impact on a wide area in a short time, so it needs a resilience based seismic countermeasures to restore the community function. For this reason, in this study, the seismic damages of urban buildings were assessed stochastically by virtual earthquakes using public data information and disaster management program(Ergo-EQ). A geographical map reflecting geological characteristics of the target area was created with the buildings and topographic data in Dalseo-gu, Daegu City. In addition, an integrated database including building characteristics was modified to be linked with the Ergo-EQ program. The seismic damages for the buildings were evaluated through the exceedance probability of four different damage levels. From the damage results, it can be identified not only the seismic damage of each building, but also the major factors affecting earthquake damage.

Forecasting of flood travel time depending on weir discharge condition using two-dimensional numerical model in the channel (2차원 수치모형을 이용한 보 방류조건에 따른 하도 내 홍수도달시간 예측)

  • Lee, Hae-Kwang;Oh, Ji-Hwan;Jang, Suk-Hwan;Song, Man-Kyu
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.6
    • /
    • pp.397-409
    • /
    • 2019
  • Gate operation of hydraulic structures is important for proper management in rivers. In this study, the characteristics of flood time were analyzed and predicted using the HEC-RAS model, which is capable of one-dimensional and two-dimensional connectivity analysis of the main points downstream of the Geum river. As a result, flood travel time was decreased once discharge increase and downstream water level rising. However, When the floodplain was overflowed, the arrival time increased due to the rapid increase of the river width. Also, the same condition, flood wave travel time at the major point was approximately twice as fast as water level rising travel time, indicating that waves progressed faster than actually water. Using the results of this study, it will be helpful in the river.

Estimation of Landslide Risk based on Infinity Flow Direction (무한방향흐름기법을 이용한 산사태 위험도 평가)

  • Oh, Sewook;Lee, Giha;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.2
    • /
    • pp.5-18
    • /
    • 2019
  • In this study, it was conducted a broad-area landslide analysis for the entire area of Kyungsangbuk-do Province based on spatially-distributed wetness index and root reinforcement infinity slope stability theory. Specifically, digital map, soil map and forest map were used to extract topological and geological parameters, and to build spatially-distributed database at $10m{\times}10m$ resolution. Infinity flow direction method was used for rain catchment area to produce spatially-distributed wetness index. The safety level that indicates risk of a broad-area landslide was classified into four groups. The result showed that areas with a high estimated risk of a landslide coincided with areas that recently went through an actual landslide, including Bonghwa and Gimcheon, and unstable areas were clustered around mountainous areas. A comparison between the estimation result and the records of actual landslide showed that the analysis model is effective for estimating a risk of a broad-area landslide based on accumulation of reasonable parameters.

Frequency analysis of storm surge using Poisson-Generalized Pareto distribution (Poisson-Generalized Pareto 분포를 이용한 폭풍해일 빈도해석)

  • Kim, Tae-Jeong;Kwon, Hyun-Han;Shin, Young-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.3
    • /
    • pp.173-185
    • /
    • 2019
  • The Korean Peninsula is considered as one of the most typhoon related disaster prone areas. In particular, the potential risk of flooding in coastal areas would be greater when storm surge and heavy rainfall occurred at the same time. In this context, understanding the mechanism of the interactions between them and estimating the risk associated with the concurrent occurrence are of particular interests especially in low-lying coastal areas. In this study, we developed a Poisson-Generalized Pareto (Poisson-GP) distribution based storm surge frequency analysis model to combine the occurrence of the exceedance of a threshold, that is the peaks over threshold (POT), within a Bayesian framework. The storm surge frequency analysis technique developed through this study might contribute to the improvement of disaster prevention technology related to storm surge in the coastal area.

Implementation and Analysis Performance of CCM-UW based AES, ARIA Blockcipher for Underwater Environment (수중무선통신 환경에 적합한 AES, ARIA 블록암호 기반 CCM-UW 구현 및 성능 분석)

  • Lee, Jae-Hoon;Park, Minha;Yun, Nam-Yeol;Yi, Okyeon;Park, Soo-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.115-118
    • /
    • 2014
  • Underwater Wireless Communication System can be useful for research of quality of water, ocean resources exploration, analysis ocean environment and so on. However, there exist security threats including data loss, data forgery, and another variety of security threats, because of characteristics of water, various geographical factors, intended attack, etc. To solve these problem, in this paper, we propose a CCM-UW mode of operation modified form of CCM mode of operation, providing data confidentiality, integrity, origin authentication and anti-attack prevent, for the Underwater Wireless Communication System. By implementing CCM-UW in MACA protocol(Underwater Wireless Communication MAC Protocol) and measuring speed of communication, we confirm the applicability of the security and analyze the communication environment impact.

  • PDF

Automatic Analysis Model for Support Emergency Medical Helicopter Landing Zone Using Geographic Information System (GIS를 이용한 비상 의료지원 헬리콥터 착륙지점 자동 분석 모델)

  • Park, Jong-kook;Lee, Eun-seok;Kim, Jong-hee;Kim, Jeong-su;Kim, Jong-bae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.338-340
    • /
    • 2014
  • The purpose of this research is to support decision making of emergency rescue system with GIS which selects landing point of emergency rescue for emergency situation on mountains and dropping point when landing is impossible. The area of research was limited to Pocheon-si, Gyeonggi-do. The results were divided into two values; landing point of helicopter on mountains and dropping point. Digital map, forest type map and forest soil map were utilized as fundamental data. Factors of landing point were slope, topographical characteristics, vegetation characteristics and area of helicopter landing point by helicopter data. And, for dropping point, slope and vegetation characteristics were divided as factors and GIS intersect function was utilized for the analysis. But, this research was conducted by excluding factor values of wind direction, wind velocity, etc. In the future, it's necessary to improve effectiveness of the analysis more by making a connection with Meteorological Agency DB.

  • PDF

Technology Development Trends Analysis and Development Plan of Unmanned Underwater Vehicle (무인 잠수정 연구 개발 동향 분석 및 발전 방안)

  • Lee, Ji Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.233-239
    • /
    • 2019
  • An unmanned underwater vehicle is a major weapon system that allows surveillance and reconnaissance missions in border areas or threatening areas where enemy submarines are present. Unmanned underwater vehicles can be used to explore underwater resources, predict disasters, and survey the topography of the ocean floor in the civilian fields, while in the defense fields, it can be used for anti-submarine reconnaissance and mine countermeasures. In this paper, we first investigate the main classification of unmanned underwater vehicles, and foreign R&D trends are analyzed based on the main classification criteria by weight, such as portable, light, heavy and large-scale unmanned underwater vehicles. Then we examine the trends in the development of domestic unmanned underwater vehicles. Finally, through the analysis of both domestic and foreign unmanned underwater vehicles, we present future development trends of unmanned underwater vehicles in order to set defense goals to counter the anticipated threats and diversified potential environment.

Autonomous Drone Navigation in the hallway using Convolution Neural Network (실내 복도환경에서의 컨벌루션 신경망을 이용한 드론의 자율주행 연구)

  • Jo, Jeong Won;Lee, Min Hye;Nam, Kwang Woo;Lee, Chang Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.8
    • /
    • pp.936-942
    • /
    • 2019
  • Autonomous driving of drone indoor must move along a narrow path and overcome other factors such as lighting, topographic characteristics, obstacles. In addition, it is difficult to operate the drone in the hallway because of insufficient texture and the lack of its diversity comparing with the complicated environment. In this paper, we study an autonomous drone navigation using Convolution Neural Network(CNN) in indoor environment. The proposed method receives an image from the front camera of the drone and then steers the drone by predicting the next path based on the image. As a result of a total of 38 autonomous drone navigation tests, it was confirmed that a drone was successfully navigating in the indoor environment by the proposed method without hitting the walls or doors in the hallway.

Efficient Detection of Small Unmanned Aerial Vehicles in Cluttered Environment (클러터 환경을 고려한 효과적 소형 무인기 탐지에 관한 연구)

  • Choi, Jae-Ho;Kang, Ki-Bong;Sun, Sun-Gu;Lee, Jung-Soo;Cho, Byung-Lae;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.5
    • /
    • pp.389-398
    • /
    • 2019
  • In this paper, we propose a method to detect small unmanned aerial vehicles(UAVs) flying in a real-world environment. Small UAV signals are frequently obscured by clutter signals because UAVs usually fly at low altitudes over urban or mountainous terrain. Therefore, to obtain a desirable detection performance, clutter signals must be considered in addition to noise, and thus, a performance analysis of each clutter removal technique is required. The proposed detection process uses clutter removal and pulse integration methods to suppress clutter and noise signals, and then detects small UAVs by utilizing a constant false alarm rate detector. After applying three clutter removal techniques, we analyzed the performance of each technique in detecting small UAVs. Based on experimental data acquired in a real-world outdoor environment, we found it was possible to derive a clutter removal method suitable for the detection of small UAVs.