• Title/Summary/Keyword: 한국컴퓨터

Search Result 36,246, Processing Time 0.058 seconds

A Study on Application Methodology of SPDL Based on IEC 62443 Applicable to SME Environment (중소기업환경에서 적용 가능한 IEC 62443 기반의 개발 보안 생애주기 프로세스 적용 방안 연구)

  • Jin, Jung Ha;Park, SangSeon;Kim, Jun Tae;Han, Keunhee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.6
    • /
    • pp.193-204
    • /
    • 2022
  • In a smart factory environment in a small and medium-sized enterprise (SME) environment, sensors and actuators operating on actual manufacturing lines, programmable logic controllers (PLCs) to manage them, human-machine interface (HMI) to control and manage such PLCs, and consists of operational technology server to manage PLCs and HMI again. PLC and HMI, which are in charge of control automation, perform direct connection with OT servers, application systems for factory operation, robots for on-site automation, and production facilities, so the development of security technology in a smart factory environment is demanded. However, smart factories in the SME environment are often composed of systems that used to operate in closed environments in the past, so there exist a vulnerable part to security in the current environment where they operate in conjunction with the outside through the Internet. In order to achieve the internalization of smart factory security in this SME environment, it is necessary to establish a process according to the IEC 62443-4-1 Secure Product Development Life cycle at the stage of smart factory SW and HW development. In addition, it is necessary to introduce a suitable development methodology that considers IEC 62443-4-2 Component security requirements and IEC 62443-3 System security requirements. Therefore, this paper proposes an application plan for the IEC 62443 based development security process to provide security internalization to smart factories in an SME environment.

Automated Story Generation with Image Captions and Recursiva Calls (이미지 캡션 및 재귀호출을 통한 스토리 생성 방법)

  • Isle Jeon;Dongha Jo;Mikyeong Moon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.1
    • /
    • pp.42-50
    • /
    • 2023
  • The development of technology has achieved digital innovation throughout the media industry, including production techniques and editing technologies, and has brought diversity in the form of consumer viewing through the OTT service and streaming era. The convergence of big data and deep learning networks automatically generated text in format such as news articles, novels, and scripts, but there were insufficient studies that reflected the author's intention and generated story with contextually smooth. In this paper, we describe the flow of pictures in the storyboard with image caption generation techniques, and the automatic generation of story-tailored scenarios through language models. Image caption using CNN and Attention Mechanism, we generate sentences describing pictures on the storyboard, and input the generated sentences into the artificial intelligence natural language processing model KoGPT-2 in order to automatically generate scenarios that meet the planning intention. Through this paper, the author's intention and story customized scenarios are created in large quantities to alleviate the pain of content creation, and artificial intelligence participates in the overall process of digital content production to activate media intelligence.

Energy Balancing Distribution Cluster With Hierarchical Routing In Sensor Networks (계층적 라우팅 경로를 제공하는 에너지 균등분포 클러스터 센서 네트워크)

  • Mary Wu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.3
    • /
    • pp.166-171
    • /
    • 2023
  • Efficient energy management is a very important factor in sensor networks with limited resources, and cluster techniques have been studied a lot in this respect. However, a problem may occur in which energy use of the cluster header is concentrated, and when the cluster header is not evenly distributed over the entire area but concentrated in a specific area, the transmission distance of the cluster members may be large or very uneven. The transmission distance can be directly related to the problem of energy consumption. Since the energy of a specific node is quickly exhausted, the lifetime of the sensor network is shortened, and the efficiency of the entire sensor network is reduced. Thus, balanced energy consumption of sensor nodes is a very important research task. In this study, factors for balanced energy consumption by cluster headers and sensor nodes are analyzed, and a balancing distribution clustering method in which cluster headers are balanced distributed throughout the sensor network is proposed. The proposed cluster method uses multi-hop routing to reduce energy consumption of sensor nodes due to long-distance transmission. Existing multi-hop cluster studies sets up a multi-hop cluster path through a two-step process of cluster setup and routing path setup, whereas the proposed method establishes a hierarchical cluster routing path in the process of selecting cluster headers to minimize the overhead of control messages.

A Study on the Application of Task Offloading for Real-Time Object Detection in Resource-Constrained Devices (자원 제약적 기기에서 자율주행의 실시간 객체탐지를 위한 태스크 오프로딩 적용에 관한 연구)

  • Jang Shin Won;Yong-Geun Hong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.12
    • /
    • pp.363-370
    • /
    • 2023
  • Object detection technology that accurately recognizes the road and surrounding conditions is a key technology in the field of autonomous driving. In the field of autonomous driving, object detection technology requires real-time performance as well as accuracy of inference services. Task offloading technology should be utilized to apply object detection technology for accuracy and real-time on resource-constrained devices rather than high-performance machines. In this paper, experiments such as performance comparison of task offloading, performance comparison according to input image resolution, and performance comparison according to camera object resolution were conducted and the results were analyzed in relation to the application of task offloading for real-time object detection of autonomous driving in resource-constrained devices. In this experiment, the low-resolution image could derive performance improvement through the application of the task offloading structure, which met the real-time requirements of autonomous driving. The high-resolution image did not meet the real-time requirements for autonomous driving due to the increase in communication time, although there was an improvement in performance. Through these experiments, it was confirmed that object recognition in autonomous driving affects various conditions such as input images and communication environments along with the object recognition model used.

Efficient Stack Smashing Attack Detection Method Using DSLR (DSLR을 이용한 효율적인 스택스매싱 공격탐지 방법)

  • Do Yeong Hwang;Dong-Young Yoo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.9
    • /
    • pp.283-290
    • /
    • 2023
  • With the recent steady development of IoT technology, it is widely used in medical systems and smart TV watches. 66% of software development is developed through language C, which is vulnerable to memory attacks, and acts as a threat to IoT devices using language C. A stack-smashing overflow attack inserts a value larger than the user-defined buffer size, overwriting the area where the return address is stored, preventing the program from operating normally. IoT devices with low memory capacity are vulnerable to stack smashing overflow attacks. In addition, if the existing vaccine program is applied as it is, the IoT device will not operate normally. In order to defend against stack smashing overflow attacks on IoT devices, we used canaries among several detection methods to set conditions with random values, checksum, and DSLR (random storage locations), respectively. Two canaries were placed within the buffer, one in front of the return address, which is the end of the buffer, and the other was stored in a random location in-buffer. This makes it difficult for an attacker to guess the location of a canary stored in a fixed location by storing the canary in a random location because it is easy for an attacker to predict its location. After executing the detection program, after a stack smashing overflow attack occurs, if each condition is satisfied, the program is terminated. The set conditions were combined to create a number of eight cases and tested. Through this, it was found that it is more efficient to use a detection method using DSLR than a detection method using multiple conditions for IoT devices.

Detection of video editing points using facial keypoints (얼굴 특징점을 활용한 영상 편집점 탐지)

  • Joshep Na;Jinho Kim;Jonghyuk Park
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.15-30
    • /
    • 2023
  • Recently, various services using artificial intelligence(AI) are emerging in the media field as well However, most of the video editing, which involves finding an editing point and attaching the video, is carried out in a passive manner, requiring a lot of time and human resources. Therefore, this study proposes a methodology that can detect the edit points of video according to whether person in video are spoken by using Video Swin Transformer. First, facial keypoints are detected through face alignment. To this end, the proposed structure first detects facial keypoints through face alignment. Through this process, the temporal and spatial changes of the face are reflected from the input video data. And, through the Video Swin Transformer-based model proposed in this study, the behavior of the person in the video is classified. Specifically, after combining the feature map generated through Video Swin Transformer from video data and the facial keypoints detected through Face Alignment, utterance is classified through convolution layers. In conclusion, the performance of the image editing point detection model using facial keypoints proposed in this paper improved from 87.46% to 89.17% compared to the model without facial keypoints.

Modified AWSSDR method for frequency-dependent reverberation time estimation (주파수 대역별 잔향시간 추정을 위한 변형된 AWSSDR 방식)

  • Min Sik Kim;Hyung Soon Kim
    • Phonetics and Speech Sciences
    • /
    • v.15 no.4
    • /
    • pp.91-100
    • /
    • 2023
  • Reverberation time (T60) is a typical acoustic parameter that provides information about reverberation. Since the impacts of reverberation vary depending on the frequency bands even in the same space, frequency-dependent (FD) T60, which offers detailed insights into the acoustic environments, can be useful. However, most conventional blind T60 estimation methods, which estimate the T60 from speech signals, focus on fullband T60 estimation, and a few blind FDT60 estimation methods commonly show poor performance in the low-frequency bands. This paper introduces a modified approach based on Attentive pooling based Weighted Sum of Spectral Decay Rates (AWSSDR), previously proposed for blind T60 estimation, by extending its target from fullband T60 to FDT60. The experimental results show that the proposed method outperforms conventional blind FDT60 estimation methods on the acoustic characterization of environments (ACE) challenge evaluation dataset. Notably, it consistently exhibits excellent estimation performance in all frequency bands. This demonstrates that the mechanism of the AWSSDR method is valuable for blind FDT60 estimation because it reflects the FD variations in the impact of reverberation, aggregating information about FDT60 from the speech signal by processing the spectral decay rates associated with the physical properties of reverberation in each frequency band.

Analyzing the Impact of Multivariate Inputs on Deep Learning-Based Reservoir Level Prediction and Approaches for Mid to Long-Term Forecasting (다변량 입력이 딥러닝 기반 저수율 예측에 미치는 영향 분석과 중장기 예측 방안)

  • Hyeseung Park;Jongwook Yoon;Hojun Lee;Hyunho Yang
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.4
    • /
    • pp.199-207
    • /
    • 2024
  • Local reservoirs are crucial sources for agricultural water supply, necessitating stable water level management to prepare for extreme climate conditions such as droughts. Water level prediction is significantly influenced by local climate characteristics, such as localized rainfall, as well as seasonal factors including cropping times, making it essential to understand the correlation between input and output data as much as selecting an appropriate prediction model. In this study, extensive multivariate data from over 400 reservoirs in Jeollabuk-do from 1991 to 2022 was utilized to train and validate a water level prediction model that comprehensively reflects the complex hydrological and climatological environmental factors of each reservoir, and to analyze the impact of each input feature on the prediction performance of water levels. Instead of focusing on improvements in water level performance through neural network structures, the study adopts a basic Feedforward Neural Network composed of fully connected layers, batch normalization, dropout, and activation functions, focusing on the correlation between multivariate input data and prediction performance. Additionally, most existing studies only present short-term prediction performance on a daily basis, which is not suitable for practical environments that require medium to long-term predictions, such as 10 days or a month. Therefore, this study measured the water level prediction performance up to one month ahead through a recursive method that uses daily prediction values as the next input. The experiment identified performance changes according to the prediction period and analyzed the impact of each input feature on the overall performance based on an Ablation study.

A Study on the Use of Retailtech and Intention to Accept Technology based on Experiential Marketing (체험마케팅에 기반한 리테일테크 활용과 기술수용의도에 관한 연구)

  • Sangho Lee;Kwangmoon Cho
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.137-148
    • /
    • 2024
  • The purpose of this study is to determine how the use of retailtech technology affects consumers' purchase intention. Furthermore, this study aims to investigate the mediating effects of technology usefulness and ease of use on this influence relationship and whether experiential marketing moderates consumers' purchase intention. The survey was conducted from August 1, 2023 to September 30, 2023, and a total of 257 people participated in the study. For statistical analysis, hierarchical regression analysis, three-stage mediation regression analysis, and hierarchical three-stage controlled regression analysis were conducted to test the hypothesis. The results of the study are as follows. First, it was confirmed that big data-AI utilization, mobile-SNS utilization, live commerce utilization, and IoT utilization affect purchase intention in retail technology utilization. Second, technology usefulness has a mediating effect on IoT utilization, mobile-SNS utilization, and big data-AI utilization. Third, perceived ease of use of technology mediated the effects of IoT utilization, mobile-SNS utilization, live-commerce utilization, and big data-AI utilization. Fourth, escapist experience has a moderating effect on mobile SNS utilization and live commerce utilization. Fifth, esthetic experience has a moderating effect on mobile-SNS utilization and big data-AI utilization. Through this study, we hope that the domestic distribution industry will contribute to national competitiveness by securing the competitive advantage of companies by utilizing new technologies in entering the global market.

Performance Evaluation and Analysis on Single and Multi-Network Virtualization Systems with Virtio and SR-IOV (가상화 시스템에서 Virtio와 SR-IOV 적용에 대한 단일 및 다중 네트워크 성능 평가 및 분석)

  • Jaehak Lee;Jongbeom Lim;Heonchang Yu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.2
    • /
    • pp.48-59
    • /
    • 2024
  • As functions that support virtualization on their own in hardware are developed, user applications having various workloads are operating efficiently in the virtualization system. SR-IOV is a virtualization support function that takes direct access to PCI devices, thus giving a high I/O performance by minimizing the need for hypervisor or operating system interventions. With SR-IOV, network I/O acceleration can be realized in virtualization systems that have relatively long I/O paths compared to bare-metal systems and frequent context switches between the user area and kernel area. To take performance advantages of SR-IOV, network resource management policies that can derive optimal network performance when SR-IOV is applied to an instance such as a virtual machine(VM) or container are being actively studied.This paper evaluates and analyzes the network performance of SR-IOV implementing I/O acceleration is compared with Virtio in terms of 1) network delay, 2) network throughput, 3) network fairness, 4) performance interference, and 5) multi-network. The contributions of this paper are as follows. First, the network I/O process of Virtio and SR-IOV was clearly explained in the virtualization system, and second, the evaluation results of the network performance of Virtio and SR-IOV were analyzed based on various performance metrics. Third, the system overhead and the possibility of optimization for the SR-IOV network in a virtualization system with high VM density were experimentally confirmed. The experimental results and analysis of the paper are expected to be referenced in the network resource management policy for virtualization systems that operate network-intensive services such as smart factories, connected cars, deep learning inference models, and crowdsourcing.