• 제목/요약/키워드: 한국에너지연구소

검색결과 985건 처리시간 0.025초

홀뮴 도핑된 TiO2를 이용한 광전기화학 수소 제조 (Photoelectrochemical Hydrogen Production with Holmium-doped TiO2)

  • 정현민;김민서;조혜경;주현규;강경수;이광복;김한성;윤재경
    • 한국수소및신에너지학회논문집
    • /
    • 제34권5호
    • /
    • pp.413-420
    • /
    • 2023
  • Holmium-doped TiO2 nanotubes (Ho-TNTs) were manufactured through anodization treatment and electrochemical deposition, and optimization experiments were conducted using various Holmium doping concentrations and time as variables. Surface as well as electrochemical characteristics were analyzed to study the prepared photocatalysts. Ho-TNTs were found to exist only in anatase phase through X-ray diffraction analysis. Ho-TNTs with 0.01 wt% 100 seconds shows a photocurrent density of 3.788 mA/cm2 and an effective photo-conversion efficiency (PCE) of 4.30%, which is more efficient than pure TiO2 nanotubes (pure-TNTs) (at bias potential 1.5 V vs. Hg/HgO). The photocatalytic activity of the aforementioned Ho-TNTs for hydrogen production was evaluated with the result of -29.20 µmol/h·cm2.

태양광시스템 모델식과 기계학습을 이용한 발전성능 추정 (Estimation of Power Using PV System Model Formula and Machine Learning)

  • 오현규;신우균;주영철;배수현;황혜미;강기환;고석환;장효식
    • Current Photovoltaic Research
    • /
    • 제11권1호
    • /
    • pp.27-33
    • /
    • 2023
  • In this paper, a machine learning model by using a regression algorithm is proposed to estimate the power generation performance of the BIPV system. The physical model formula for estimating the generation performance and the proposed model were compared and analyzed. For the physical model formula, simple efficiency model, temperature correction model, and regressive physics model for changing an irradiance were used. As a result, when comparing the regressive physics model for changing an irradiance and the proposed model with the actual generation measured data, the respective RMSE values are 0.1497 kW, 0.0451 kW and the accuracy values are 86.44%, and 96.56%. Therefore, the proposed model implemented in this experiment can be useful in estimating power generation.

가정용 독립 연료전지-배터리 하이브리드 에너지 관리 기술 개발 (Energy Management Technology Development for an Independent Fuel Cell-Battery Hybrid System Using for a Household)

  • 양석란;김정석;최미화;김영배
    • 한국수소및신에너지학회논문집
    • /
    • 제30권2호
    • /
    • pp.155-162
    • /
    • 2019
  • The energy management technology for an independent fuel cell-battery hybrid system is developed for a household usage. To develop an efficient energy management technology, a simulation model is first developed. After the model is verified with experimental results, three energy management schemes are developed. Three control techniques are a fuzzy logic control (FLC), a state machine control (SMC), and a hybrid method of FLC and SMC. As the fuel cell-battery hybrid system is used for a house, battery state of charge (SOC) regulation is the most important factor for an energy management because SOC should be kept constant every day for continuous usage. Three management schemes are compared to see SOC, power split, and fuel cell power variations effects. Experimental results are also presented and the most favorable strategy is the state machine combined fuzzy control method.

고분자 보호 필름을 적용한 태양광 모듈의 출력 및 신뢰성에 관한 연구 (A Study on the Output and Reliability Characteristics of Ultra Barrier Film PV Module)

  • 임종록;신우균;윤희상;김용성;주영철;고석환;강기환;황혜미
    • 한국태양에너지학회 논문집
    • /
    • 제39권5호
    • /
    • pp.1-10
    • /
    • 2019
  • Recently, the installation capacity of PV (photovoltaic) systems has been increasing not only field installation but also floating PV, farm land, BIPV/BAPV. For this reason, the new design and materials of PV module are needed. In particular, in order to apply a PV system to a building, lightweight of the PV module is essential. PV modules made of generally used texturing glass are excellent in output and reliability, but there is a limit to the weight that can be reduced. For the lightweight of the PV module, it necessary to use a film instead of a glass. However, the application of film rather than a glass may cause various problems such as decrease in photocurrent by decrease in transmittance and a increase of CTM (cell to module) loss, a degradation of the reliability, and so on. In this paper, PV modules using Ultra barrier film, which is recently a lot of interest as a substitute for a glass, its characteristic analysis and reliability test were conducted. The transmittance and UV characteristics of each material were verified, and the output of the fabricated 1 cell PV module was measured. In addition, 24 cell PV modules were fabricated at the lab-scale and its reliability tests were conducted. As a result of the experiment, the reliability characteristics of the ultra barrier film PV module were excellent, and it was confirmed that it could be used as the front material of the PV module instead of glass