패러프레이즈란 어떤 문장을 같은 의미를 가지는 다른 단어들을 사용하여 표현한 것들을 의미한다. 이는 정보 검색, 다중 문서 요약, 질의응답 등 여러 자연어 처리 분야에서 중요한 역할을 한다. 특히, 양질의 패러프레이즈 코퍼스를 얻는 것은 많은 시간 및 비용이 소요된다. 이러한 문제점을 해소하기 위해 본 논문에서는 문장 유사도를 이용한 패러프레이즈 쌍을 구축하고, 또 구축한 패러프레이즈 쌍을 이용하여 기계 학습을 통해 새로운 패러프레이즈을 생성한다. 제안 방식으로 생성된 패러프레이즈 쌍은 기존의 구축되어 있는 코퍼스 내 나타나는 표현들로만 구성된 페러프레이즈 쌍이라는 단점이 존재한다. 이러한 단점을 해소하기 위해 기계 학습을 이용한 실험을 진행하여 새로운 표현에 대한 후보군을 추출하는 방법을 적용하여 새로운 표현이라고 볼 수 있는 후보군들을 추출하여 기존의 코퍼스 내 새로운 표현들이 생성된 것을 확인할 수 있었다.
본 연구에서는 인권의 측면에서 AI 모델이 향상된 답변을 제시할 수 있는 방안을 모색하기 위해서 AI가 인권의 문제를 고민하는 전문가와 자신의 문제를 해결하고자 하는 사용자 사이에서 어느 정도로 도움을 줄 수 있는가를 정량적, 정성적으로 검증했다. 구체적으로는 국가인권위원회의 결정례와 상담사례를 분석한 후 이를 바탕으로 좀 더 나은 답변은 무엇인지에 대해 고찰하기 위해서 인권과 관련된 질의 응답 세트를 만든다. 질의 응답 세트는 인권 코퍼스를 학습한 모델과 그렇지 않은 모델의 생성 결과를 바탕으로 한다. 또한 생성된 질의 응답 세트를 바탕으로 설문을 실시하여 전문적인 내용을 담은 문장에 대한 선호도를 분석한다. 본 논문은 대화형 생성 모델이 인권과 관련된 주제에 대해서도 선호되는 답변을 제시할 수 있는가에 대한 하나의 대안이 될 수 있을 것이다.
본 논문에서는 코퍼스를 이용한 확률 의존문법 자동 생성 기술을 다룬다. 한국어의 부분 자유 어순성질과 문장의 필수적 성분의 생략과 같은 특성으로 인하여 한국어 구문분석에 관한 연구들에서는 주로 의존문법을 선호하고 있다. 본 논문에서는 기존의 어절단위학습방법에서는 학습할 수 없었던 어절 내의 의존관계를 학습할 수 있는 형태소 단위의 학습 방법을 제안한다. KAIST의 트리 부착 코퍼스 약 3만 문장에서 추출한 25,000문장의Tagged Corpus을 가지고 한국어 확률 의존문법 학습을 시도하였다. 그 결과 초기문법 2,349개의 정확한 문법을 얻을 수 있었으며, 문법의 정확성을 실험하기 위해 350개의 실험문장을 parsing한 결과 69.77%의 파싱 정확도를 보였다. 이로서 한국어 어절 특성을 고려한 형태소 단위 학습으로 얻어진 의존문법이 어절 단위 학습으로 얻어진 문법보다 더 정확하다는 사실을 알 수 있었다.
본 논문은 의미 중의성 해소에 있어서 품사 태깅의 중요성을 언급한 Wilks의 논문 [6]을 근거로 하여 한국어 의미 중의성 해소에 있어서의 품사 태깅의 역할을 살펴보고, 영어의 경우와 비교, 분석한다. 한국어 사전과 코퍼스를 각각 대상으로 품사 태깅을 이용한 의미 중의성 실험 결과, 한국어의 경우는 영어의 경우보다 품사를 이용한 의미 중의성 해소율이 떨어지는 결과를 보이고 있다.
본 논문에서는 한국어 대화 처리를 위한 통계기반 음성언어이해 시스템에 대해 기술한다. 음성언어이해시스템은 대화처리에서 음성 인식된 문장으로부터 사용자의 의도를 인식하여 의미표현으로 표현하는 기능을 담당한다. 한국어의 특성을 반영한 실용적인 음성언어이해 시스템을 위해서 강건성과 적용성, 확장성 등이 요구된다. 이를 위해 본 시스템은 음성언어의 특성상 구조분석을 하지 않고, 마이닝 기법을 이용하여 사용자 의도 표현을 생성하는 방식을 취하고 있다. 또한 한국어에서 나타나는 특징들에 대한 처리를 위해 자질 추가 및 점규화 처리 등을 수행하였다. 정보서비스용 대화처리 시스템을 대상으로 개발되고 있고, 차량 정보서비스용 학습 코퍼스를 대상으로 실험을 하여 문장단위 정확률로 약 89%의 성능을 보이고 있다.
한국어 형태소 분석은 입력된 문장 내의 어절들을 지니는 최소의 단위인 형태소로 분리하고 품사 부착하는 작업을 의미한다. 기존 한국어 형태소 분석 방법은 음절 기반 연구가 주를 이루고 이를 순차 태깅 문제로 보고 SVM, CRF혹은 Bi-LSTM-CRF 등을 이용하거나 특정 음절에서 형태소의 경계를 결정하는 전이 기반 모델을 통해 분석하는 모델 등이 연구되었다. 최근 자연어 처리 연구에서 대용량 코퍼스로부터 문맥을 고려한 BERT 등의 언어 모델을 활용한 연구가 각광받고 있다. 본 논문에서는 음절 단위가 아닌 BERT를 이용한 Sub-word 기반 형태소 분석 방법을 제안하고 기분석 사전을 통해 분석하는 과정을 거쳐 세종 한국어 형태소 분석 데이터 셋에서 형태소 단위 F1 : 95.22%, 어절 정확도 : 93.90%의 성능을 얻었다.
최근 정보 추출, 질의응답 시스템 등의 고정밀 자연어처리 어플리케이션이 부각됨에 따라 개체명 인식의 중요성이 더욱 커지고 있다. 이러한 개체명 인식을 위한 학습에는 대용량의 어휘자료를 필요로 하기 때문에 충분한 학습 데이터, 즉 개체명 태그가 부착된 충분한 코퍼스가 제공되지 못하는 경우 자료희귀문제(data sparseness problem)로 인하여 목적한 효과를 내지 못하는 경우가 않다. 그러나 태그가 부착된 코퍼스를 생성하는 일은 시간과 인력이 많이 드는 힘든 작업이다. 최근 인터넷의 발전으로 웹 데이터는 그 양이 매우 많으며, 습득 또한 웹 검색 엔진을 사용해서 자동으로 모음으로써 다량의 말뭉치를 모으는 것이 매우 용이하다. 따라서 최근에는 웹을 무한한 언어자원으로 보고 웹에서 필요한 언어자원을 자동으로 뽑는 연구가 활발히 진행되고 있다. 본 연구는 이러한 연구의 첫 시도로 웹으로부터 다량의 원시(raw) 코퍼스를 얻어 개체명 태깅 학습을 위한 태그 부착 코퍼스를 자동으로 생성하고 이렇게 생성된 말뭉치를 개체면 태깅 학습에 적용하는 비교 실험을 통해 수집된 말뭉치의 유효성을 검증하고자 한다. 향후에는 자동으로 웹으로부터 개체 명 태깅 규칙과 패턴을 뽑아내어 실제 개체명 태거를 빨리 개발하여 유용하게 사용할 수 있다.
인공지능 기술의 비약적 발전과 함께 사람의 언어를 다루는 자연어 처리 분야 역시 활발하게 연구가 진행되고 있다. 특히 최근에는 구글에서 공개한 언어 모델인 BERT는 대량의 코퍼스를 활용해 미리 학습시킨 모델을 제공함으로써 자연어 처리의 여러 분야에서 좋은 성능을 보이고 있다. BERT에서 다국어 모델을 지원하고 있지만 한국어에 바로 적용했을 때는 한계점이 존재하기 때문에 대량의 한국어 코퍼스를 이용해 학습시킨 모델을 사용해야 한다. 또한 텍스트는 어휘, 문법적인 의미만 담고 있는 것이 아니라 전후 관계, 상황과 같은 문맥적인 의미도 담고 있다. 기존의 자연어 처리 분야에서는 어휘나 문법적인 의미를 중심으로 연구가 주로 이루어졌다. 텍스트에 내재되어 있는 문맥 정보의 정확한 파악은 맥락을 이해하는 데에 있어 중요한 역할을 한다. 단어들의 관계를 이용해 연결한 지식그래프는 컴퓨터에게 쉽게 문맥을 학습시킬 수 있는 장점이 있다. 본 논문에서는 한국어 코퍼스를 이용해 사전 학습된 BERT 모델과 지식 그래프를 이용해 한국어 문맥 정보를 추출하는 시스템을 제안하고자 한다. 텍스트에서 중요한 요소가 되는 인물, 관계, 감정, 공간, 시간 정보를 추출할 수 있는 모델을 구축하고 제안한 시스템을 실험을 통해 검증한다.
본 연구는 한국어 화장품 리뷰 코퍼스의 자질기반 감성 분석을 위하여, 이 도메인에서 실현되는 중요한 다단어 표현(MWE)의 유한상태 그래프 사전과 문법을 구축하는 방법론을 제시하고, 실제 구축된 사전과 문법의 성능을 평가하는 것을 목표로 한다. 본 연구에서는 자연어처리(NLP)에서 중요한 화두로 논의되어 온 MWE의 어휘-통사적 특징을 부분문법 그래프(LGG)로 형식화하였다. 화장품 리뷰 코퍼스에 DECO 한국어 전자사전을 적용하여 어휘 빈도 통계를 획득하고 이에 대한 언어학적 분석을 통해 극성 MWE(Polarity-MWE)와 화제 MWE(Topic MWE)의 전체 네 가지 하위 범주를 분류하였다. 또한 각 모듈간의 상호관계에 대한 어휘-통사적 속성을 반복적으로 적용하는 이중 증식(double-propagation)을 통해 자원을 확장하였다. 이 과정을 통해 구축된 대용량 MWE 유한그래프 사전 DECO-MWE의 성능을 테스트한 결과 각각 0.844(Pol-MWE), 0.742(Top-MWE)의 조화평균을 보였다. 이를 통해 본 연구에서 제안하는 MWE 언어자원 구축 방법론이 다양한 도메인에서 활용될 수 있고 향후 자질기반 감성 분석에 중요한 자원이 될 것임을 확인하였다.
문법 구축은 NLP 작업에서 중요한 역할을 한다. 이 논문에서는 트리뱅크 코퍼스에서 자동으로 어휘화 문법을 추출하는 시스템을 소개한다 문법 자동 추출 시스템에서 자동으로 추출한 어휘화 TAG 문법, CFG 문법, 의존관계 등 여러 정보는 이후 한국어 파서 구현 및 다양한 NLP 연구에 사용된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.