• Title/Summary/Keyword: 한국어 코퍼스

Search Result 245, Processing Time 0.022 seconds

Improvement of Transformation Rule-Based Korean Part-Of-Speech Tagger (변형 규칙 기반 한국어 품사 태거의 개선)

  • Lim, Heui-Seok;Kim, Jin-Dong;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 1996.10a
    • /
    • pp.216-221
    • /
    • 1996
  • 변형 규칙 기반 품사 태거는 태깅 규칙을 코퍼스로부터 자동 학습할 수 있고, 견고하며 태깅 결과를 이해하고 분석하기가 쉽다는 장점을 갖는다. 이에 최근 한국어 특성을 고려한 변형 규칙 기반 한국어 품사 태거가 개발되었다. 하지만 이 시스템은 오류 어절의 어휘 정보를 사용하지 않으므로 수정 가능 오류에 대한 변형 규칙이 제대로 학습되지 못하며, 변형 규칙 적용 과정에 새로운 오류를 발생시킨다는 문제점이 있다. 이에 본 논문은 오류 어절의 어휘 정보를 참조할 수 있는 세부변형 규칙 추출을 이용한 변형 규칙 기반 한국어 품사 태거의 개선 방안을 제안한다. 어휘 정보를 참조할 수 있는 세부 변형 규칙의 형태는 특정 문맥 C에서 어절 W의 어절 태그 ${\alpha}$를 어절 태그 ${\beta}$로 변형한다와 같다. 제안된 방법은 약 10만 어절 크기의 학습 코퍼스에서 57개의 세부 규칙을 학습하였고, 2만 어절 크기의 실험코퍼스에 적용한 결과 95.6%의 정확도를 보임으로써 기존의 변형 규칙 기반 품사 태거의 정확도를 약 15.4% 향상시켰다.

  • PDF

Dependency Structure Analysis System for Korean Using Automatically Acquired Transformation Rules (변환 규칙 학습기를 이용한 한국어 의존 구조 분석기)

  • Lee, Song-Wook;Seo, Jung-Yun
    • Annual Conference on Human and Language Technology
    • /
    • 1997.10a
    • /
    • pp.360-363
    • /
    • 1997
  • 코퍼스 속의 언어적 규칙을 직접적으로 사용하여 한국어 의존 구조를 분석하기 위해, 본 한국어 의존 구조 분석기는 의존 구조가 나타나 있는 코퍼스로부터 변환 규칙 학습기로 규칙을 자동적으로 학습하고 그 규칙을 적용함으로써 한국어 의존 구조를 분석한다. 이를 위해 기존의 연구된 구구조 문법의 규칙 틀과는 다른 한국어 의존 구조에 맞는 규칙 틀을 연구하였고 또 의존 구조에서 발생할 수 있는 교차구조(Crossing structure)를 방지하는 연산을 고안하였다.

  • PDF

Clustering Noun Using Syntactic Relations (용언의 구문관계를 이용한 명사 분류)

  • Kim, Hyun-Jin;Park, Se-Young;Jang, Myung-Gil;Park, Jay-Duke;Park, Dong-In
    • Annual Conference on Human and Language Technology
    • /
    • 1997.10a
    • /
    • pp.111-115
    • /
    • 1997
  • 자연언어를 처리하는 응용시스템에서는 의미적으로 유사한 집합으로 분류된 단어들을 이용하는 것이 필요하다. 특히 한국어에서는 명사마다 함께 쓰이는 용언들이 제한되어 있다. 이 논문에서는 문장에서 용언과 명사의 구문 관계로 추출되는 정보를 이용하여 명사를 분류하는 방법을 제시한다. 또한 실제 코퍼스에서 추출된 명사들을 중심으로 의미적 집합으로 묶는 작업을 하고, 각 의미군마다 특징적인 구문 정보를 적용하여 자동 명사 추출에서 나타나는 모호성 해소에도 이용하였다. 용언의 구문관계 추출은 기존 연구된 용언 하위 분류 연구를 이용하였고, 코퍼스를 통해 얻은 명사와 용언을 이용하여 수정 및 보완하였다. 실험 코퍼스는 1만 문장 가량의 구문 구조가 부착된 코퍼스(Tree Tagged Corpus)를 이용하였다.

  • PDF

Korean Morphological Analysis and Part-Of-Speech Tagging with LSTM-CRF based on BERT (BERT기반 LSTM-CRF 모델을 이용한 한국어 형태소 분석 및 품사 태깅)

  • Park, Cheoneum;Lee, Changki;Kim, Hyunki
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.34-36
    • /
    • 2019
  • 기존 딥 러닝을 이용한 형태소 분석 및 품사 태깅(Part-Of-Speech tagging)은 feed-forward neural network에 CRF를 결합하는 방법이나 sequence-to-sequence 모델을 이용한 방법 등의 다양한 모델들이 연구되었다. 본 논문에서는 한국어 형태소 분석 및 품사 태깅을 수행하기 위하여 최근 자연어처리 태스크에서 많은 성능 향상을 보이고 있는 BERT를 기반으로 한 음절 단위 LSTM-CRF 모델을 제안한다. BERT는 양방향성을 가진 트랜스포머(transformer) 인코더를 기반으로 언어 모델을 사전 학습한 것이며, 본 논문에서는 한국어 대용량 코퍼스를 어절 단위로 사전 학습한 KorBERT를 사용한다. 실험 결과, 본 논문에서 제안한 모델이 기존 한국어 형태소 분석 및 품사 태깅 연구들 보다 좋은 (세종 코퍼스) F1 98.74%의 성능을 보였다.

  • PDF

On Correction Guideline of Tagged Corpus (품사 부착 코퍼스 수정 방안에 대하여)

  • Kim, Eun-Hye;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2000.10d
    • /
    • pp.361-367
    • /
    • 2000
  • 품사 부착 코퍼스를 구축하기 위해서는 일반적으로 형태소 분석, 자동 품사 태깅 수동 또는 자동 오류 수정의 단계를 거친다. 이 글은 그 마지막 단계의 일환인 수동으로 오류를 수정하는 과정에서 요구되는 여러 가지 정보의 필요성과 문제점에 대해 기술하고자 한다. 조사와 어미의 처리 문제, 접두사/접미사 처리 문제, 다품사 문제 등은 정밀도 높은 코퍼스를 구축하는 데 중요한 열쇠가 되기 때문이다. 자연 언어 자료인 코퍼스에 일관성 있는 품사 정보가 부착된다면 정보 검색이나 사전 구축 등 언어 정보 처리 연구에 중요한 자료로 사용될 수 있을 것이다.

  • PDF

Korean language model construction and comparative analysis with Cross-lingual Post-Training (XPT) (Cross-lingual Post-Training (XPT)을 통한 한국어 언어모델 구축 및 비교 실험)

  • Suhyune Son;Chanjun Park ;Jungseob Lee;Midan Shim;Sunghyun Lee;JinWoo Lee ;Aram So;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.295-299
    • /
    • 2022
  • 자원이 부족한 언어 환경에서 사전학습 언어모델 학습을 위한 대용량의 코퍼스를 구축하는데는 한계가 존재한다. 본 논문은 이러한 한계를 극복할 수 있는 Cross-lingual Post-Training (XPT) 방법론을 적용하여 비교적 자원이 부족한 한국어에서 해당 방법론의 효율성을 분석한다. 적은 양의 한국어 코퍼스인 400K와 4M만을 사용하여 다양한 한국어 사전학습 모델 (KLUE-BERT, KLUE-RoBERTa, Albert-kor)과 mBERT와 전반적인 성능 비교 및 분석 연구를 진행한다. 한국어의 대표적인 벤치마크 데이터셋인 KLUE 벤치마크를 사용하여 한국어 하위태스크에 대한 성능평가를 진행하며, 총 7가지의 태스크 중에서 5가지의 태스크에서 XPT-4M 모델이 기존 한국어 언어모델과의 비교에서 가장 우수한 혹은 두번째로 우수한 성능을 보인다. 이를 통해 XPT가 훨씬 더 많은 데이터로 훈련된 한국어 언어모델과 유사한 성능을 보일 뿐 아니라 학습과정이 매우 효율적임을 보인다.

  • PDF

A Compilation of Maritime English Corpus for English for Specific Purposes Education (특수목적영어 교육을 위한 해사영어코퍼스 구축)

  • Lee, Sung-Min;Kim, Jae-Hoon;Jhang, Se-Eun
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.163-164
    • /
    • 2015
  • 본 연구는 특수목적영어분인 해사영어코퍼스의 구축을 목적으로 한다. 구축과정에서 코퍼스 구축에 필요한 대표성과 균형성을 고려하여 네 가지 장르인 학술, 뉴스, 법, 책으로 나누고 각 하위코퍼스를 백만 단어씩 구축하였다. 코퍼스 구축과정에서 웹사이트와 PDF형태의 자료에서 텍스트만을 수집하고 정제하기 위하여 파이썬(Python) 프로그래밍 코딩을 하였고 무료 공개 프로그램도 병행하였다. 앞으로 해사영어코퍼스는 해사영어어휘교육에 필요한 단어목록제공이나 예문 검색 등을 통한 자료중심학습법에 활용될 수 있을 것이다. 또한 본 연구의 코퍼스구축 과정은 다른 분야의 ESP코퍼스 구축에도 응용 될 수 있을 것이다.

  • PDF

Probabilistic Dependency Grammar Induction (한국어 확률 의존문법 학습)

  • 최선화;박혁로
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.513-515
    • /
    • 2003
  • 본 논문에서는 코퍼스를 이용한 확률 의존문법 자동 생성 기술을 다룬다. 의존문법 생성을 위해 구성성분의 기능어들 간의 의존관계를 학습했던 기존 연구와는 달리. 한국어 구성성분은 내용어와 기능어의 결함 형태로 구성되고 임의 구성성룬 기능어와 임의 구성성분 내용어간의 의존관계가 의미가 있다는 사실을 반영한 의존문법 학습방법을 제안한다. KAIST의 트리 부착 코퍼스 31,086문장에서 추출한 30,600문장의 Tagged Corpus을 가지고 학습한 결과 초기문법을 64%까지 줄인 1.101 개의 의존문법을 획득했고. 실험문장 486문장을 Parsing한 결과 73.81%의 Parsing 정확도를 보였다.

  • PDF

Parallel Corpus Filtering and Korean-Optimized Subword Tokenization for Machine Translation (병렬 코퍼스 필터링과 한국어에 최적화된 서브 워드 분절 기법을 이용한 기계번역)

  • Park, Chanjun;kim, Gyeongmin;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.221-224
    • /
    • 2019
  • 딥러닝을 이용한 Neural Machine Translation(NMT)의 등장으로 기계번역 분야에서 기존의 규칙 기반,통계기반 방식을 압도하는 좋은 성능을 보이고 있다. 본 논문은 기계번역 모델도 중요하지만 무엇보다 중요한 것은 고품질의 학습데이터를 구성하는 일과 전처리라고 판단하여 이에 관련된 다양한 실험을 진행하였다. 인공신경망 기계번역 시스템의 학습데이터 즉 병렬 코퍼스를 구축할 때 양질의 데이터를 확보하는 것이 무엇보다 중요하다. 그러나 양질의 데이터를 구하는 일은 저작권 확보의 문제, 병렬 말뭉치 구축의 어려움, 노이즈 등을 이유로 쉽지 않은 상황이다. 본 논문은 고품질의 학습데이터를 구축하기 위하여 병렬 코퍼스 필터링 기법을 제시한다. 병렬 코퍼스 필터링이란 정제와 다르게 학습 데이터에 부합하지 않다고 판단되며 소스, 타겟 쌍을 함께 삭제 시켜 버린다. 또한 기계번역에서 무엇보다 중요한 단계는 바로 Subword Tokenization 단계이다. 본 논문은 다양한 실험을 통하여 한-영 기계번역에서 가장 높은 성능을 보이는 Subword Tokenization 방법론을 제시한다. 오픈 된 한-영 병렬 말뭉치로 실험을 진행한 결과 병렬 코퍼스 필터링을 진행한 데이터로 만든 모델이 더 좋은 BLEU 점수를 보였으며 본 논문에서 제안하는 형태소 분석 단위 분리를 진행 후 Unigram이 반영된 SentencePiece 모델로 Subword Tokenization를 진행 하였을 시 가장 좋은 성능을 보였다.

  • PDF

An Automatic Korean Lexical Acquisition System (한국어 어휘자동획득 시스템)

  • Lim, Heui-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1087-1091
    • /
    • 2007
  • This paper proposes a automatic korean lexical acquisition system which reflects the characteristics of human language acquisition. The proposed system automatically builds two kinds of lexicon, full-form lexicon and decomposition using Korean corpus as its input. As the experimental results using Korean Sejeong corpus of which size is 10 million Eojeols, the system acquired 2,097 full-form Eojeols and 3,488 morphemes. The accumulated frequency of the acquired full-form Eojeols covers the 38.63% of the input corpus and accuracy of morpheme acquisition is 99.87%.

  • PDF