교정 시스템에 나타나는 오류 유형들 중에는 전체적인 교정률에 차지하는 비중은 적지만 출현할 때마다 틀릴 가능성이 아주 높은 오류들이 있다. 기존의 교정 시스템에서는 이러한 오류들에 대한 처리가 미흡한데, 철자 오류와 띄어쓰기 오류 중 형태가 비슷하거나 같은 형태가 다른 기능을 함으로써 발생하는 오류들이다. 이러한 오류는 일반 문서 작성자뿐만 아니라 한글 맞춤법에 대해 어느 정도 지식을 가진 사람의 경우에도 구분이 모호하다. 복합 명사와 미등록어를 제외한 오류 중 약 30%가 여기에 속한다. 따라서 본 논문에서는 이러한 오류 유형들을 분류하고, 이 중에서 빈번하게 출현하는 오류에 대한 교정을 시도하고, 오류 유형들이 문장 내에서 어떤 분포를 가지는지 알아본다. 약 617만 어절의 말뭉치를 이용하여 해당 형태와 다른 성분들과의 관련성을 조사하여 교정 방법을 제시하고, 형태소 분석을 하여 교정을 행한다. 코퍼스 655만 어절 대상으로 실험한 결과 84.6%의 교정률을 보였다. 본 논문에서 제시한 교정 방법은 기존의 교정 시스템에 추가되어 교정 시스템의 전체 교정률을 향상시킬 수 있다. 또한 이와 비슷한 유형의 다른 어휘 교정에 대한 기초 자료로 사용될 수 있을 것이다.
어휘가 갖는 의미적 중의성은 자연어의 특성 중 하나로 자연어 처리의 정확도를 떨어트리는 요인으로, 이러한 중의성을 해소하기 위해 언어적 규칙과 다양한 기계 학습 모델을 이용한 연구가 지속되고 있다. 의미적 중의성을 가지고 있는 동형이의어의 의미분별을 위해서는 주변 문맥이 가장 중요한 자질이 되며, 자질 정보를 추출하기 위해 사용하는 문맥 창의 크기는 중의성 해소의 성능과 밀접한 연관이 있어 신중히 결정되어야 한다. 본 논문에서는 의미분별과정에 필요한 문맥을 가변적인 크기로 사용하는 가변길이 윈도우 방식을 제안한다. 세종코퍼스의 형태의미분석 말뭉치로 학습하여 12단어 32,735문장에 대해 실험한 결과 용언의 경우 평균 정확도 92.2%로 윈도우를 고정적으로 사용한 경우에 비해 향상된 결과를 보였다.
This paper describes a multi-step method of intonation modeling for corpus-based Korean speech synthesizer. We selected 1833 sentences considering various syntactic structures and built a corresponding speech corpus uttered by a female announcer. We detected the pitch using laryngograph signals and manually marked the prosodic boundaries on recorded speech, and carried out the tagging of part-of-speech and syntactic analysis on the text. The detected pitch was separated into 3 frequency bands of low, mid, high frequency components which correspond to the baseline, the word tone, and the syllable tone. We predicted them using the CART method and the Viterbi search algorithm with a word-tone-dictionary. In the collected spoken sentences, 1500 sentences were trained and 333 sentences were tested. In the layer of word tone modeling, we compared two methods. One is to predict the word tone corresponding to the mid-frequency components directly and the other is to predict it by multiplying the ratio of the word tone to the baseline by the baseline. The former method resulted in a mean error of 12.37 Hz and the latter in one of 12.41 Hz, similar to each other. In the layer of syllable tone modeling, it resulted in a mean error rate less than 8.3% comparing with the mean pitch, 193.56 Hz of the announcer, so its performance was relatively good.
본 논문에서는 개념망 구축을 위해 사전 뜻풀이말에서 추출 가능한 의미속성의 분포 정보를 기반으로 어휘 연관도를 측정하고자 한다. 먼저 112,000여 개의 사전 뜻풀이말을 대상으로 품사 태그와 의미 태그가 부여된 코퍼스에서 의미속성을 추출한다. 추출 가능한 의미속성은 체언류, 부사류, 용언류 등이 있는데 본 논문에서는 일차적으로 명사류와 수식 관계에 있는 용언류 중 관형형 전성어미('ㄴ/은/는')가 부착된 것을 대상으로 한다. 추출된 공기쌍 45,000여 개를 대상으로 정제 작업을 거쳐 정보이론의 상호 정보량(MI)을 이용하여 명사류와 용언류의 연관도를 측정한다. 한편, 자료의 희귀성을 완화하기 위해 수식 관계의 명사류와 용언류는 기초어휘를 중심으로 유사어 집합으로 묶어서 작업을 하였다. 이러한 의미속성의 분포 정보를 통해 측정된 어휘 연관도는 의미속성의 공유 정도를 계산하여 개념들간에 계층구조를 구축하는 데 이용할 수 있다.
본 논문에서는 한국어 Trainable TTS System의 자연스러운 음성 합성을 위해 400문장(어절수 : 6,220, 음운수: 총43,701: 자음 23,899,모음: 19,802)에 대하여 단일 남성화자가 발성한 문 음성 데이터를 음운레벨세그먼트, 음운 라벨링 ,어절간의 띄어쓰기 ,어절에 대한 음운별 품사가 태깅된 문 음성 코퍼스를 사용하여 음운 환경과 품사에 의하여 음운의 지속시간이 어떻게 변화하는가에 대하여 통계적으로 분석하였다. 그리고 음운 지속시간을 보다 정교하게 예측하기 위하여, 각 음운에 대한 고유 지속시간의 영향이 배제된 정규화 음운지속시간에 대한 회귀트리를 이용하여 정규화 지속시간에 영향을 미치는 특징요소들 간의 관계를 통계적인 방법으로 분석하였다. 그 결과 문법적인 특징요소를 나타내는 요소들간에 서로 상관이 높게 나타나는 것을 알 수 있었다 그리고 이러한 경우 유사한 특징 요소들간에 상관이 1에 가까울 정도로 상관이 높은 요소들의 경우 예측지수가 낮은 요소들을 제거하여도 지속시간변화에 영향을 미치지 못하는 것으로 나타났다. 그 결과 문법적 성질이 유사한 특징 요소들을 회귀트리를 통해 모델링할 경우에 요소들간의 상관정도를 분석하여 최소한의 특징요소들을 선택 할 수 있는 방법을 제시하였다 그리고 이를 토대로 한 정규화 회귀트리의 모델링이 지속시간 회귀트리 모델링보다 우수함을 입증하였다.
교차언어 문서검색에서는 단일언어 문서 상황을 만들기 위하여 질의나 문서를 다른 언어로 변환하게 되는데, 일반적으로 간단하면서도 실용적인 질의 변환의 방법을 주로 사용하고 있다. 하지만 단순한 대역 사전을 사용한 질의 변환의 경우에 변환 모호성 때문에 40% 이상의 검색 효과의 감소를 가져온다. 본 논문에서는 이러한 변환 모호성을 해결하기 위하여 대역 코퍼스로부터 추출한 상호 정보를 이용하는 단순하지만 효과적인 사전 기반 질의 변환 방법을 제안한다. 본 연구에서는 변환 모호성으로 발생한 다수의 후보들에서 가장 좋은 후보를 선택하는 모호성 해소 뿐 아니라 후보 단어들에 적절히 가중치를 부여하는 방법을 사용한다. 본 질의 변환 방법은 단순히 가장 큰 상호 정보의 단어를 선택하여 모호성 해소만을 적용하는 방법과 Krushall의 최소 스패닝 트리 구성과 유사한 방법으로 상호 정보가 큰 순서대로 간선들을 연결하여 모호성 해소와 가중치 부여를 적용하는 방법들과 질의 변환의 검색 효과를 비교한다. 본 질의 변환 방법은 TREC-6 교차언어 문서검색 환경의 실험에서 단일 언어 문서검색의 경우의 85%, 수작업 모호성 해소의 경우의 96%에 도달하는 성능을 얻었다.
패턴기반기계번역방식은 원시언어패턴과 그에 대한 대역언어패턴들의 쌍을 이용하여 구문분석과 변환을 수행하는 기계번역방식이다. 패턴기반 기계번역방식은 번역할 때 발생하는 애매성을 해소하기 위해 패턴의 길이를 문장단위까지 늘이기 때문에, 패턴의 수가 급증하는 문제점을 가진다. 본 논문에서는 패턴의 단위를 구단위로 한정시킬 때 발생하는 애매성을 해소하는 방법으로 시소러스를 기반으로 한 두단계 대역어 선택 방식을 제안함으로써 효과적으로 애매성을 감소시키면서 패턴의 길이를 줄이는 모델을 제시한다. 두단계 대역어 선택 방식은 원시언어의 한 패턴에 대해 여러 가능한 목적언어의 대역패턴들이 있을 때, 첫 번째 단계에서는 원시언어 내에서의 제약조건에 맞는 몇가지 대역패턴들을 선택하고, 두번째 단계에서는 목적언어 내에서의 제약조건에 가장 적합한 하나의 대역패턴을 선택하는 방식이다. 또한 본 논문에서는 이와 같은 모델에서 패턴의 수가 코퍼스의 증가에 따른 수렴가능성을 논한다.
본 논문에서는 의존 구조 매칭과 약한 지도식 학습 방법을 적용하여 텍스트에서 IS-A 관계를 자동으로 추출하고 순위화하는 방법을 제안한다. 텍스트에서 잠재적인 IS-A 관계를 표현하는 [관계 표현, 하위어, 상위어]의 삼진관계 리스트를 추출하고, 관계 표현과 IS-A 관계 인스턴스, IS-A 관계 후보, 사이의 상호 관련성을 이용하여 각각의 점수를 반복적으로 정제한다. 제안한 방법의 대표적인 특징은 다음과 같다. 1) 의존 구조에 기반한 패턴 매칭 방법을 적용하여 정규 표현에 기반한 방법보다 다양한 형태의 삼진관계를 추출할 수 있고, 2) 도메인 코퍼스에서 통계적으로 추출한 어휘 사이의 관련성 정보를 이용하여 도메인에 적합한 IS-A 관계 인스턴스의 순위를 높일 수 있으며, 3) 관계 표현과 관계 인스턴스의 점수를 상호 관련성에 기반한 방법으로 반복적으로 점수화하여 IS-A 관계 인스턴스 사이의 변별력을 높일 수 있다. 실험에서 순위화된 관계 인스턴스는 전문가의 판단과 66%이상 일치함을 보였고, 의존 구조를 이용한 유연한 패턴 매칭 방법은 정규표현을 이용한 방법보다 43.6%의 추가적인 삼진관계를 추출하였다.
온톨로지 구축에서 클래스간 관계 설정은 중요한 부분이다. 본 논문에서는 클래스간 상 하위 관계 외의 관계 설정을 위한 클래스간 관계 자동 정의를 목적으로 의존구문분석의 (주어, 용언) (목적어, 용언) 쌍들을 추출하고, 이렇게 추출된 데이터를 이용하여 용언들을 클러스터링 하는 방법을 제안한다. 도메인 전문 코퍼스 데이터 희귀성 문제를 해결하고자, 웹검색을 결합한 방식을 선택하여 도메인 온톨로지 구축 클래스간 관계 자동 설정에 대한 방법론을 제시한다.
본 연구는 IT 인물 관련 텍스트 정보의 효율적인 검색을 위하여 문서 내에서 인물과 관련된 정보를 담고 있는 문장들이 어떠한 특징을 가지고 실현되는가를 살펴보고 언어적 속성을 어떻게 구조화하고 형식화할 것인가를 논의하는 것을 목적으로 한다. 언어적 속성 분석을 위해서 전자신문 내에서 인물 관련 코퍼스를 수집하고 이들의 분석을 통해 다음과 같이 문제가 되는 특징들을 확인하였다. 즉 외래어 음차 표기문제, 복합명사 및 명사구 그리고 서술 명사적 표현의 문제 등으로 요약된다. IT라는 특정 영역에 대해 텍스트 내에서의 어휘-통사적 패턴을 분석하고 언어적 특징에 대한 효율적 기술을 위해서는 LGG 부분 문법 그래프 모델을 활용하도록 한다. 본 연구는 특정 영역인 IT 관련 문서에서 자연언어 텍스트를 대상으로 정보 검색할 때 문제가 되는 다양한 언어학적 현상들을 다루며, 향후보다 확장된 영역에서의 효율적 언어 처리에 대한 방법론적 대안을 제시할 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.