• 제목/요약/키워드: 한국어 코퍼스

검색결과 245건 처리시간 0.025초

코퍼스 확률에 기반한 한국어 표준발음 생성 (The Corpus-probability Based Generation of Korean Standard Pronunciation)

  • 김동성
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2007년도 제19회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.210-215
    • /
    • 2007
  • 본 연구에서는 코퍼스 확률에 기반하여 한국어 표준 발음 생성에 대한 연구를 한다. 기존의 이은영 외 (2005)에서 연구된 규칙기반의 한국어 IPA 발음 변환방식과는 달리 본 연구에서는 음운변환 코퍼스를 바탕으로 표준발음을 변환한다. 이 방식을 위해서 Brill(1995)에서 제안한 변형기반 학습방식이 활용되었으며, 단계적인 처리방식이 아닌 입-출력 대응 방식의 확률적 처리 방식이 제안되었다. 음운변환 방식은 음운규칙에 근거한 처리가 아닌 언어자원인 코퍼스를 활용해서 처리하였다는 점에서 기존의 연구방식과 차이가 있다. 또한, 기존 연구에서는 음운규칙을 단계적으로 적용하여서 입력형이 출력형으로 도출되기 위해서 여러 단계를 거쳤지만, 본 연구에서는 입력형과 출력형의 일대일 대응이라는 점에서 차이점을 보인다.

  • PDF

담화 성분을 활용한 지시 발화의 키프레이즈 추출: 한국어 병렬 코퍼스 구축 및 데이터 증강 방법론 (Keyphrase Extraction of Directive Utterances via Discourse Component: Construction and Data Augmentation of Korean Parallel Corpus)

  • 조원익;문영기;김종인;김남수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.241-245
    • /
    • 2019
  • 문서 요약, 키프레이즈 추출과 패러프레이징은 인간이, 혹은 기계가 문서를 보다 원활히 이해하는 데에 도움을 주는 방법론들이다. 우리는 본 연구에서 질문/요구 등의 지시성 발화를 대상으로, 핵심 내용을 추출하는 간단한 방법론을 통해 한국어 병렬 코퍼스를 구축한다. 또한, 우리는 인적 자원을 활용한 효율적인 데이터 증강 전략을 통해 부족하거나 필수적인 유형의 발화의 양을 보강하고, 약 5만 쌍 크기의 코퍼스를 제작하여 이를 공개한다.

  • PDF

구문 관계 지식 추출을 위한 코퍼스 정규화에 대한 연구 (A Corpus Formalization for Extracting the Syntactic Relations)

  • 조정미;조영환;김길창
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1996년도 제8회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.207-215
    • /
    • 1996
  • 대량의 코퍼스를 이용해 여러 가지 일반적인 언어 현상을 관찰하고, 언어 지식을 자동으로 획득하여 자연 언어 처리의 여러 분야에 이용하는 등의 연구가 활발히 진행되고 있으며, 이에 따라 코퍼스에 대한 필요성이 날로 증가하고 있다. 코퍼스에서 추출할 수 있는 유용한 지식 중의 하나가 구문 관계 지식이다. 그러나 한국어에 자주 나타나는 격이동이나 생략 현상, 복합어의 이형태 등은 정확한 지식 획득을 어렵게 할 뿐 아니라 자료 회귀 문제를 더욱 심화시킨다. 본 논문에서는 한국어의 문법적인 특징을 반영한 코퍼스정규화에 의해 이러한 문제를 해결하고자한다.

  • PDF

한국어-한국수화 병렬 코퍼스의 효율적 제작 (An Effective Construction of a Korean-to-KSL Parallel Corpus)

  • 김정호;박종철
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2014년도 제26회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.13-17
    • /
    • 2014
  • 본 연구에서는 한국어와 한국수화 간의 병렬 코퍼스 제작과 함께 이에 따른 문제를 다룬다. 본 연구에서는 병렬 코퍼스를 효율적으로 제작하기 위해 키넥트와 립모션을 이용하였고, 이의 성능을 검증하기 위해 기존 연구에서 제시하고 있는 장갑을 통한 동작 인식 및 수집 방법과 본 연구에서 제시하고 있는 수집 방법을 비교하였으며, 비교 결과 장갑을 통해 수집한 결과와 유의미하게 차이가 나지 않음을 확인하였다. 이는 본 연구의 동작 수집 방식이 상대적으로 고비용인 장갑 수집 방식과 비교하여 경쟁력이 있음을 시사하고 있으며, 특히 보편적인 자료 수집 방식을 사용하는 특징까지 가지고 있어서 동시적으로 자료를 수집할 수 있어 규모가 있는 병렬 코퍼스 구축을 더욱 효율적으로 진행할 수 있을 것으로 기대된다.

  • PDF

Deep CNN 기반의 한국어 음소 인식 모델 연구 (Korean Phoneme Recognition Model with Deep CNN)

  • 홍윤석;기경서;권가진
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 춘계학술발표대회
    • /
    • pp.398-401
    • /
    • 2018
  • 본 연구에서는 심충 합성곱 신경망(Deep CNN)과 Connectionist Temporal Classification (CTC) 알고리즘을 사용하여 강제정렬 (force-alignment)이 이루어진 코퍼스 없이도 학습이 가능한 음소 인식 모델을 제안한다. 최근 해외에서는 순환 신경망(RNN)과 CTC 알고리즘을 사용한 딥 러닝 기반의 음소 인식 모델이 활발히 연구되고 있다. 하지만 한국어 음소 인식에는 HMM-GMM 이나 인공 신경망과 HMM 을 결합한 하이브리드 시스템이 주로 사용되어 왔으며, 이 방법 은 최근의 해외 연구 사례들보다 성능 개선의 여지가 적고 전문가가 제작한 강제정렬 코퍼스 없이는 학습이 불가능하다는 단점이 있다. 또한 RNN 은 학습 데이터가 많이 필요하고 학습이 까다롭다는 단점이 있어, 코퍼스가 부족하고 기반 연구가 활발하게 이루어지지 않은 한국어의 경우 사용에 제약이 있다. 이에 본 연구에서는 강제정렬 코퍼스를 필요로 하지 않는 CTC 알고리즘을 도입함과 동시에, RNN 에 비해 더 학습 속도가 빠르고 더 적은 데이터로도 학습이 가능한 합성곱 신경망(CNN)을 사용하여 딥 러닝 모델을 구축하여 한국어 음소 인식을 수행하여 보고자 하였다. 이 모델을 통해 본 연구에서는 한국어에 존재하는 49 가지의 음소를 추출하는 세 종류의 음소 인식기를 제작하였으며, 최종적으로 선정된 음소 인식 모델의 PER(phoneme Error Rate)은 9.44 로 나타났다. 선행 연구 사례와 간접적으로 비교하였을 때, 이 결과는 제안하는 모델이 기존 연구 사례와 대등하거나 조금 더 나은 성능을 보인다고 할 수 있다.

코퍼스로부터 형태소 분석을 위한 사전 구성 (A Dictionay Composition for Morphological Analyzer from Corpus)

  • 정민수;정규철;조원홍
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1998년도 제10회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.316-320
    • /
    • 1998
  • 한국어나 일본어처럼 문법형태소의 기능에 의해 단어의 통사적, 의미적 역할이 결정되는 교착어에서는 형태소 분석이 통사 분석과 의미 분석에 미치는 영향이 크기 때문에 한국어의 분석에 있어서 형태소 분석은 아주 중요하다. 관형적 표현이 많은 한글은 문법 규칙만으론 분석하기가 쉽지 않고, 분기가 많이 생성되므로 오류가 발생할 확률도 높다. 이러한 문제점을 해결하기 위해 본 논문에선 사전을 중심으로 해결하고자 한다. 그러기 위해선 방대한 용량의 사전이 필요로 하게 되고 이를 구축하기 위한 시간과 노력이 요구되므로 이미 구성된 코퍼스를 이용해 사전을 구성하여 많은 시간과 노력을 줄일 수 있도록 한다. 그리고 생성되는 많은 분기 가운데 올바른 경로를 찾아 가기 위해 코퍼스내의 각 태그 결합정보를 추출하고 추출한 결합정보의 통계정보-코퍼스내에서 사용된 빈도수-포함하여 우선순위를 정하도록 한다.

  • PDF

한국어 혐오 표현 코퍼스 구축 방법론 연구: 온라인 악성 댓글에 나타나는 특성을 중심으로 (A Study on the Construction of Korean Hate Speech Corpus: Based on the Attributes of Online Toxic Comments)

  • 조원익;문지형
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.298-303
    • /
    • 2020
  • 온라인 공간에서 특정인, 혹은 특정 집단의 사람들을 대상으로 한 혐오 표현은 당사자에게 정신적 고통을 미칠 뿐 아니라 이를 보는 이에게도 간접적인 불쾌함을 유발한다. 이에 관한 문제의식은 사회적으로 공감대가 형성된 바 있지만, 아직 한국어에서는 많은 연구들이 혐오 표현 자체의 논의에 집중하고 있으며, 이는 실제로 관찰되는 혐오 표현들의 자동 탐지 및 예방에는 효과적인 정보를 제공하지 못하는 것이 사실이다. 이에 우리는 실제 온라인 댓글들을 탐구하여 혐오, 모욕 및 사회적 편견을 탐지할 수 있는 모델 학습에 필요한 코퍼스 구축 가이드라인을 제작하였다. 구체적인 사례를 동반한 가이드라인과 크라우드소싱을 바탕으로 약 9천 3백 문장 가량의 코퍼스를 구축하였으며, 해당 데이터에 관한 개요와 함께 우리의 접근 방식이 어떤 점에서 기존의 담론과 연관되어 있는지에 대한 분석을 제시한다.

  • PDF

기계학습 기법을 이용한 문장경계인식 (Sentence Boundary Detection Using Machine Learning Techniques)

  • 박수혁;임해창
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 춘계학술발표대회
    • /
    • pp.69-72
    • /
    • 2008
  • 본 논문은 언어의 통계적 특징을 이용하여 범용의 문장경계 인식기를 제안한다. 제안하는 방법은 대량의 코퍼스 내에서 사용되고 있는 문장 경계를 기준으로 음절 및 어절 등의 자질을 이용하여 통계적 특징을 추출하고 다양한 기계학습 기법을 사용하여 문장경계를 인식하고자 하였다. 또한 특정 언어나 도메인에 제한적이지 않고 범용적인 자질만을 사용하려고 노력하였다. 언어의 특성상 문장의 구분이 애매한 경우 또는 잘못 사용 된 구두점 등의 경우에도 적용 가능하도록 다양한 자질을 사용하여 실험하였으며, 한국어와 영문 코퍼스에 대해서 동일한 자질을 적용하여 실험하여 본 논문에서 제시한 자질들이 한국어 및 다른 언어권의 언어에도 적용될 수 있는 범용적인 자질임을 확인할 수 있었다. 한국어 문장경계 인식을 위한 기계학습 및 실험을 위해서 세종계획 코퍼스를 사용하였으며, 성능척도로는 정확률과 재현율을 사용하였으며, 실험결과 제안한 방법으로 99%의 정확률과 99.2%의 재현율을 보였다. 영문의 경우는 Wall Street Journal 코퍼스를 사용하였으며, 동일한 자질을 적용하여 실험한 결과 98.9%의 정확률과 94.6%의 재현율을 보였다.

문형 사전을 위한 문형 빈도 조사 (Studying the frequencies of sentence pattern for a entence patterns dictionary)

  • 김유미
    • 인지과학
    • /
    • 제16권2호
    • /
    • pp.123-140
    • /
    • 2005
  • 이 논문은 한국어 교육에서 문형 전자 사전을 바탕으로 하는 자동문형 검사기를 설계하기 위해 문형의 출현 빈도와 사용 빈도 조사를 목적으로 하였다. 먼저 한국어 교육에서의 문형의 개념을 정의하고 그 유형을 구문 문형과 표현 문형으로 나누어 분류하였다. 서술어 중심의 구문 문형과 의존명사, 어미, 조사가 중심인 표현 문형이 학습자 코퍼스에서 어떻게 나타나는지 분석하였다. 학습자 코퍼스는 학습자들이 꼭 배워야 하는 것으로 표준 코퍼스와 학습자들의 생산물인 오류 코퍼스로 나누어 구축하였다. 한국어 교재로 구성된 표준 코퍼스에서의 문형 출현 빈도와 학습자들이 직접 작성한 글을 모은 오류 코퍼스에서 어떻게 문형이 사용되고 있는지 사용 빈도를 조사하였다. 학습자들의 문형 사용 빈도순은 문형 전자 사전에 기술되고, 이것은 문형 검색 속도를 최적화할 것이다.

  • PDF

한국어-일본어 정렬 기법 연구 (Aligning Word Correspondence in Korean-Japanese Parallel Texts)

  • 김태완
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2001년도 춘계학술발표논문집 (상)
    • /
    • pp.293-296
    • /
    • 2001
  • 병렬 코퍼스의 확보가 과거에 비해 용이하게 됨에 따라 기계번역, 다국어 정보 검색 등 언어처리시스템에 사용하기 위한 대역 사전 구축의 도구로서 정렬(Alignment) 기법에 대한 연구가 필요하다. 본 논문에서는 한국어-일본어 병렬 코퍼스를 이용한 정렬 기법에 관하여 제안한다.

  • PDF