본 연구에서는 코퍼스 확률에 기반하여 한국어 표준 발음 생성에 대한 연구를 한다. 기존의 이은영 외 (2005)에서 연구된 규칙기반의 한국어 IPA 발음 변환방식과는 달리 본 연구에서는 음운변환 코퍼스를 바탕으로 표준발음을 변환한다. 이 방식을 위해서 Brill(1995)에서 제안한 변형기반 학습방식이 활용되었으며, 단계적인 처리방식이 아닌 입-출력 대응 방식의 확률적 처리 방식이 제안되었다. 음운변환 방식은 음운규칙에 근거한 처리가 아닌 언어자원인 코퍼스를 활용해서 처리하였다는 점에서 기존의 연구방식과 차이가 있다. 또한, 기존 연구에서는 음운규칙을 단계적으로 적용하여서 입력형이 출력형으로 도출되기 위해서 여러 단계를 거쳤지만, 본 연구에서는 입력형과 출력형의 일대일 대응이라는 점에서 차이점을 보인다.
문서 요약, 키프레이즈 추출과 패러프레이징은 인간이, 혹은 기계가 문서를 보다 원활히 이해하는 데에 도움을 주는 방법론들이다. 우리는 본 연구에서 질문/요구 등의 지시성 발화를 대상으로, 핵심 내용을 추출하는 간단한 방법론을 통해 한국어 병렬 코퍼스를 구축한다. 또한, 우리는 인적 자원을 활용한 효율적인 데이터 증강 전략을 통해 부족하거나 필수적인 유형의 발화의 양을 보강하고, 약 5만 쌍 크기의 코퍼스를 제작하여 이를 공개한다.
대량의 코퍼스를 이용해 여러 가지 일반적인 언어 현상을 관찰하고, 언어 지식을 자동으로 획득하여 자연 언어 처리의 여러 분야에 이용하는 등의 연구가 활발히 진행되고 있으며, 이에 따라 코퍼스에 대한 필요성이 날로 증가하고 있다. 코퍼스에서 추출할 수 있는 유용한 지식 중의 하나가 구문 관계 지식이다. 그러나 한국어에 자주 나타나는 격이동이나 생략 현상, 복합어의 이형태 등은 정확한 지식 획득을 어렵게 할 뿐 아니라 자료 회귀 문제를 더욱 심화시킨다. 본 논문에서는 한국어의 문법적인 특징을 반영한 코퍼스정규화에 의해 이러한 문제를 해결하고자한다.
본 연구에서는 한국어와 한국수화 간의 병렬 코퍼스 제작과 함께 이에 따른 문제를 다룬다. 본 연구에서는 병렬 코퍼스를 효율적으로 제작하기 위해 키넥트와 립모션을 이용하였고, 이의 성능을 검증하기 위해 기존 연구에서 제시하고 있는 장갑을 통한 동작 인식 및 수집 방법과 본 연구에서 제시하고 있는 수집 방법을 비교하였으며, 비교 결과 장갑을 통해 수집한 결과와 유의미하게 차이가 나지 않음을 확인하였다. 이는 본 연구의 동작 수집 방식이 상대적으로 고비용인 장갑 수집 방식과 비교하여 경쟁력이 있음을 시사하고 있으며, 특히 보편적인 자료 수집 방식을 사용하는 특징까지 가지고 있어서 동시적으로 자료를 수집할 수 있어 규모가 있는 병렬 코퍼스 구축을 더욱 효율적으로 진행할 수 있을 것으로 기대된다.
본 연구에서는 심충 합성곱 신경망(Deep CNN)과 Connectionist Temporal Classification (CTC) 알고리즘을 사용하여 강제정렬 (force-alignment)이 이루어진 코퍼스 없이도 학습이 가능한 음소 인식 모델을 제안한다. 최근 해외에서는 순환 신경망(RNN)과 CTC 알고리즘을 사용한 딥 러닝 기반의 음소 인식 모델이 활발히 연구되고 있다. 하지만 한국어 음소 인식에는 HMM-GMM 이나 인공 신경망과 HMM 을 결합한 하이브리드 시스템이 주로 사용되어 왔으며, 이 방법 은 최근의 해외 연구 사례들보다 성능 개선의 여지가 적고 전문가가 제작한 강제정렬 코퍼스 없이는 학습이 불가능하다는 단점이 있다. 또한 RNN 은 학습 데이터가 많이 필요하고 학습이 까다롭다는 단점이 있어, 코퍼스가 부족하고 기반 연구가 활발하게 이루어지지 않은 한국어의 경우 사용에 제약이 있다. 이에 본 연구에서는 강제정렬 코퍼스를 필요로 하지 않는 CTC 알고리즘을 도입함과 동시에, RNN 에 비해 더 학습 속도가 빠르고 더 적은 데이터로도 학습이 가능한 합성곱 신경망(CNN)을 사용하여 딥 러닝 모델을 구축하여 한국어 음소 인식을 수행하여 보고자 하였다. 이 모델을 통해 본 연구에서는 한국어에 존재하는 49 가지의 음소를 추출하는 세 종류의 음소 인식기를 제작하였으며, 최종적으로 선정된 음소 인식 모델의 PER(phoneme Error Rate)은 9.44 로 나타났다. 선행 연구 사례와 간접적으로 비교하였을 때, 이 결과는 제안하는 모델이 기존 연구 사례와 대등하거나 조금 더 나은 성능을 보인다고 할 수 있다.
한국어나 일본어처럼 문법형태소의 기능에 의해 단어의 통사적, 의미적 역할이 결정되는 교착어에서는 형태소 분석이 통사 분석과 의미 분석에 미치는 영향이 크기 때문에 한국어의 분석에 있어서 형태소 분석은 아주 중요하다. 관형적 표현이 많은 한글은 문법 규칙만으론 분석하기가 쉽지 않고, 분기가 많이 생성되므로 오류가 발생할 확률도 높다. 이러한 문제점을 해결하기 위해 본 논문에선 사전을 중심으로 해결하고자 한다. 그러기 위해선 방대한 용량의 사전이 필요로 하게 되고 이를 구축하기 위한 시간과 노력이 요구되므로 이미 구성된 코퍼스를 이용해 사전을 구성하여 많은 시간과 노력을 줄일 수 있도록 한다. 그리고 생성되는 많은 분기 가운데 올바른 경로를 찾아 가기 위해 코퍼스내의 각 태그 결합정보를 추출하고 추출한 결합정보의 통계정보-코퍼스내에서 사용된 빈도수-포함하여 우선순위를 정하도록 한다.
온라인 공간에서 특정인, 혹은 특정 집단의 사람들을 대상으로 한 혐오 표현은 당사자에게 정신적 고통을 미칠 뿐 아니라 이를 보는 이에게도 간접적인 불쾌함을 유발한다. 이에 관한 문제의식은 사회적으로 공감대가 형성된 바 있지만, 아직 한국어에서는 많은 연구들이 혐오 표현 자체의 논의에 집중하고 있으며, 이는 실제로 관찰되는 혐오 표현들의 자동 탐지 및 예방에는 효과적인 정보를 제공하지 못하는 것이 사실이다. 이에 우리는 실제 온라인 댓글들을 탐구하여 혐오, 모욕 및 사회적 편견을 탐지할 수 있는 모델 학습에 필요한 코퍼스 구축 가이드라인을 제작하였다. 구체적인 사례를 동반한 가이드라인과 크라우드소싱을 바탕으로 약 9천 3백 문장 가량의 코퍼스를 구축하였으며, 해당 데이터에 관한 개요와 함께 우리의 접근 방식이 어떤 점에서 기존의 담론과 연관되어 있는지에 대한 분석을 제시한다.
본 논문은 언어의 통계적 특징을 이용하여 범용의 문장경계 인식기를 제안한다. 제안하는 방법은 대량의 코퍼스 내에서 사용되고 있는 문장 경계를 기준으로 음절 및 어절 등의 자질을 이용하여 통계적 특징을 추출하고 다양한 기계학습 기법을 사용하여 문장경계를 인식하고자 하였다. 또한 특정 언어나 도메인에 제한적이지 않고 범용적인 자질만을 사용하려고 노력하였다. 언어의 특성상 문장의 구분이 애매한 경우 또는 잘못 사용 된 구두점 등의 경우에도 적용 가능하도록 다양한 자질을 사용하여 실험하였으며, 한국어와 영문 코퍼스에 대해서 동일한 자질을 적용하여 실험하여 본 논문에서 제시한 자질들이 한국어 및 다른 언어권의 언어에도 적용될 수 있는 범용적인 자질임을 확인할 수 있었다. 한국어 문장경계 인식을 위한 기계학습 및 실험을 위해서 세종계획 코퍼스를 사용하였으며, 성능척도로는 정확률과 재현율을 사용하였으며, 실험결과 제안한 방법으로 99%의 정확률과 99.2%의 재현율을 보였다. 영문의 경우는 Wall Street Journal 코퍼스를 사용하였으며, 동일한 자질을 적용하여 실험한 결과 98.9%의 정확률과 94.6%의 재현율을 보였다.
이 논문은 한국어 교육에서 문형 전자 사전을 바탕으로 하는 자동문형 검사기를 설계하기 위해 문형의 출현 빈도와 사용 빈도 조사를 목적으로 하였다. 먼저 한국어 교육에서의 문형의 개념을 정의하고 그 유형을 구문 문형과 표현 문형으로 나누어 분류하였다. 서술어 중심의 구문 문형과 의존명사, 어미, 조사가 중심인 표현 문형이 학습자 코퍼스에서 어떻게 나타나는지 분석하였다. 학습자 코퍼스는 학습자들이 꼭 배워야 하는 것으로 표준 코퍼스와 학습자들의 생산물인 오류 코퍼스로 나누어 구축하였다. 한국어 교재로 구성된 표준 코퍼스에서의 문형 출현 빈도와 학습자들이 직접 작성한 글을 모은 오류 코퍼스에서 어떻게 문형이 사용되고 있는지 사용 빈도를 조사하였다. 학습자들의 문형 사용 빈도순은 문형 전자 사전에 기술되고, 이것은 문형 검색 속도를 최적화할 것이다.
병렬 코퍼스의 확보가 과거에 비해 용이하게 됨에 따라 기계번역, 다국어 정보 검색 등 언어처리시스템에 사용하기 위한 대역 사전 구축의 도구로서 정렬(Alignment) 기법에 대한 연구가 필요하다. 본 논문에서는 한국어-일본어 병렬 코퍼스를 이용한 정렬 기법에 관하여 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.