• Title/Summary/Keyword: 한국어 의존구문분석

Search Result 130, Processing Time 0.021 seconds

Empirical Research on Segmentation Method for Korean Dependency Parsing (한국어 의존 구문 분석의 분석 단위에 관한 실험적 연구)

  • Lee, Jinu;Jo, Hye Mi;Bock, Suyeon;Shin, Hyopil
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.427-432
    • /
    • 2021
  • 현재 한국어 의존 구문 분석의 표준은 어절 단위로 구문 분석을 수행하는 것이다. 그러나 의존 구문 분석의 분석 단위(어절, 형태소)에 대해서는 현재까지 심도 있는 비교 연구가 진행된 바 없다. 본 연구에서는 의존 구문 분석의 분석 단위가 자연어 처리 분야의 성능에 유의미한 영향을 끼침을 실험적으로 규명한다. STEP 2000과 모두의 말뭉치를 기반으로 구축한 형태소 단위 의존 구문 분석 말뭉치를 사용하여, 의존 구문 분석기 모델 및 의존 트리를 입력으로 활용하는 문장 의미 유사도 분석(STS) 및 관계 추출(RE) 모델을 학습하였다. 그 결과, KMDP가 기존 어절 단위 구문 분석과 비교하여 의존 구문 분석기의 성능과 응용 분야(STS, RE)의 성능이 모두 유의미하게 향상됨을 확인하였다. 이로써 형태소 단위 의존 구문 분석이 한국어 문법을 표현하는 능력이 우수하며, 문법과 의미를 연결하는 인터페이스로써 높은 활용 가치가 있음을 입증한다.

  • PDF

Korean Dependency Guidelines for Dependency Parsing and Exo-Brain Language Analysis Corpus (의존 구문분석을 위한 한국어 의존관계 가이드라인 및 엑소브레인 언어분석 말뭉치)

  • Lim, Joon-Ho;Bae, Yongjin;Kim, Hyunki;Kim, Yunjeong;Lee, Kyu-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.234-239
    • /
    • 2015
  • 2000년대 중반 세종 구구조 구문분석 말뭉치가 배포된 이후 의존 구문분석이 구문분석 연구의 주요 흐름으로 자리 잡으면서 많은 연구자들이 구구조 구문분석 말뭉치를 개별적으로 의존구조로 변환하여 구문분석 연구를 수행하였다. 하지만 한국어 문장의 의존구조 표현에 대한 논의가 부족하여 서로 다른 의존구조로 변환 후 구문분석을 연구함으로써 연구 효율성이 저하되는 문제가 발생하였다 본 연구에서는 이와 같은 문제에 접근하기 위하여 한국어 문장에 대한 의존관계 가이드라인을 제안한다. 그리고 제안하는 가이드라인을 기반으로 구축한 엑소브레인 언어분석 말뭉치(725 문장)에 대해 소개한다.

  • PDF

Korean Depenency Parsing using a Maximum Spanning Tree (최대신장트리를 이용한 한국어 의존구문분석)

  • Park, Young-Min;Seo, ung-Yun
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.68-72
    • /
    • 2010
  • 본 논문에서는 그래프 기반의 최대신장트리(Maximum Spanning Tree)를 이용한 한국어 의존구문분석 방법을 제안한다. 우리는 최대신장트리 알고리즘을 한국어의 특성인 지배성분 후위의 원칙과 투사성의 원칙을 적용하여 한국어 의존구문분석에 적합한 알고리즘을 만들었다. 제안한 알고리즘은 기존의 한국어 의존구문분석의 방법들보다 낮은 시간복잡도를 가지며 대용량 말뭉치를 학습하기 위해 증분학습이 가능하고 비교적 학습속도가 빠른 Averaged Perceptron 알고리즘을 사용하였다. 실험결과 제안한 방법은 비교적 열악한 환경인 복문이 포함된 장문의 문장에서도 뛰어난 성능을 보여주었다,

  • PDF

Korean Dependency Parsing Using Statistical/Semantic Information (통계/의미 정보를 이용한 한국어 의존 파싱)

  • Jang, Myung-Gil;Ryu, Pum-Mo;Park, Jae-Deuk;Park, Dong-In;Myaeng, Sung-Hyun
    • Annual Conference on Human and Language Technology
    • /
    • 1997.10a
    • /
    • pp.313-319
    • /
    • 1997
  • 한국어 의존 파싱에서는 불필요한 의존관계의 과다한 생성과 이에 따른 다수의 구문분석 결과 생성에 대처하는 연구가 필요하다. 본 논문에서는 한국어 의존 파싱 과정에서 생기는 불 필요한 의존관계에 따른 다수의 후보 의존 트리들에 대하여 통계/의미 정보를 활용하여 최적 트리를 결정하는 구문 분석 방법을 제안한다. 본 논문의 구문 분석에서 사용하는 통계/의미 정보는 구문구조부착 말뭉치(Tree Tagged Corpus)를 이용하여 구축한 술어 하위범주화 정보 사전에서 얻었으며, 이러한 정보를 활용한 구문 분석은 한국어 구문 분석의 모호성 해소에 적용되어 한국어 구문 분석의 정확도를 높인다.

  • PDF

Head-Percolation Rules of Constituent-to-Dependency Conversion in Korean (한국어 구절 구문 코퍼스의 의존 구문 구조 트리로의 변환에서 중심어 전파 규칙)

  • Choi, Yong-seok;Lee, Kong Joo
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.514-519
    • /
    • 2018
  • 본 연구에서는 세종 구문 코퍼스를 의존 구문 코퍼스로 변환할 때 사용되는 중심어 전파(Head-Percolation) 규칙에 대하여 논의한다. 한국어는 중심어-후위 언어이기 때문에 의존 구문 트리를 구축할 때 지배소를 의존소 뒤에 배치시키는 것을 원칙으로 하였다. 그러나 의존 관계에 있는 단어 사이에 지배소를 앞쪽으로 설정하는 것이 더 자연스러운 경우가 있다. 본 연구에서는 지배소를 앞쪽으로 배치시키는 것을 허용하는 중심어 전파 규칙을 채택하여 의존 구문 코퍼스를 구축해 보고 중심어 전파 규칙이 구문 분석기의 성능에 어떤 영향을 미치는지 살펴본다. 실험 결과 지배소를 앞쪽으로 설정하는 것을 허용한 경우, 0.43%의 성능 저하가 있었으나 학습 코퍼스의 일관성을 유지한다면 성능 저하의 차이를 좀 더 줄일 수 있을 것이다.

  • PDF

Development of Broad-Coverage Korean Dependency Parser BCD-KL-Parser (한국어 구문분석 시스템 BCD-KL-Parser의 개발)

  • Kim, Minho;Kim, Seongtae;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.3-7
    • /
    • 2018
  • 본 연구진은 모든 형태소 분석 후보에 적절한 의존관계를 부여하여 구문분석 트리 후보를 순위화하여 제시하는 한국어 구문 분석 시스템 BCD-KL-Parser를 개발하고 있다. 이 시스템의 최종목표는 형태소 분석후보와 구문분석 트리 후보를 줄여나감으로써, 구문분석의 정확도와 실행 속도를 높이는 것이다. 본 논문에서 소개하는 BCD-KL-Parser에서는 형태적 중의성 해소규칙을 정의하여 형태소 분석후보의 수를 줄이고, 용언의 하위범주화 정보와 선택제약 정보 그리고 의존관계 제약규칙을 정의하여 구문분석 트리 후보의 수를 최소화할 수 있었다. 그 결과 '21세기 세종계획 구문분석 말뭉치'에서 무작위로 추출한 2,167문장에 대하여 UAS 92.27%를 달성할 수 있었다.

  • PDF

Third-order Dependency Parsing of Korean (3차 의존 파싱에 기반한 한국어 구문 분석)

  • Na, Seung-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2014.10a
    • /
    • pp.78-80
    • /
    • 2014
  • 본 논문에서는 한국어 구문 분석을 위해 3차 의존 파싱 방법을 적용한 성능 결과를 제시한다. 3차 의존 파싱에서는 조부모 (grandparent) 노드 정보까지 참조함으로써 2차 자질의 한계를 넘어 보다 복잡하고 다양한 자질을 고려할 수 있다. 실험 결과 3차 의존 파싱은 기존의 2차 한국어 의존 파싱의 성능을 향상시켰다.

  • PDF

Korean Dependency Parsing with Multi-layer Pointer Networks (멀티 레이어 포인터 네트워크를 이용한 한국어 의존 구문 분석)

  • Park, Cheoneum;Hwang, Hyunsun;Lee, Changki;Kim, Hyunki
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.92-96
    • /
    • 2017
  • 딥 러닝 모델은 여러 히든 레이어로 구성되며, 히든 레이어의 깊이가 깊어질수록 레이어의 벡터는 높은 수준으로 추상화된다. 본 논문에서는 Encoder RNN의 레이어를 여러 층 쌓은 멀티 레이어 포인터 네트워크를 제안하고, 멀티 태스크 학습 기반인 멀티 레이어 포인터 네트워크를 이용한 한국어 의존 구문 분석 모델을 제안한다. 멀티 태스크 학습 모델은 어절 간의 의존 관계와 의존 레이블 정보를 동시에 구하여 의존 구문 분석을 수행한다. 실험 결과, 본 논문에서 제안한 모델이 기존 한국어 의존 구문 분석 연구들 보다 좋은 UAS 92.16%, LAS 89.88%의 성능을 보였다.

  • PDF

Improved Deep Biaffine Attention for Korean Dependency Parsing (한국어 의존 구문 분석을 위한 개선된 Deep Biaffine Attention)

  • O, Dongsuk;Woo, Jongseong;Lee, Byungwoo;Kim, Kyungsun
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.608-610
    • /
    • 2018
  • 한국어 의존 구문 분석(Dependency Parsing)은 문장 어절의 중심어(head)와 수식어(modifier)의 의존관계를 표현하는 자연어 분석 방법이다. 최근에는 이러한 의존 관계를 표현하기 위해 주의 집중 메커니즘(Attention Mechanism)과 LSTM(Long Short Term Memory)을 결합한 모델들이 높은 성능을 보이고 있다. 본 논문에서는 개선된 Biaffine Attention 의존 구문 분석 모델을 제안한다. 제안된 모델은 기존의 Biaffine Attention에서 의존성과 의존 관계를 결정하는 방법을 개선하였고, 한국어 의존 구문 분석을 위한 입력 열의 형태소 표상을 확장함으로써 기존의 모델보다 UAS(Unlabeled Attachment Score)가 0.15%p 더 높은 성능을 보였다.

  • PDF

Korean Dependency Parsing with Multi-layer Pointer Networks (멀티 레이어 포인터 네트워크를 이용한 한국어 의존 구문 분석)

  • Park, Cheoneum;Hwang, Hyunsun;Lee, Changki;Kim, Hyunki
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.92-96
    • /
    • 2017
  • 딥 러닝 모델은 여러 히든 레이어로 구성되며, 히든 레이어의 깊이가 깊어질수록 레이어의 벡터는 높은 수준으로 추상화된다. 본 논문에서는 Encoder RNN의 레이어를 여러 층 쌓은 멀티 레이어 포인터 네트워크를 제안하고, 멀티 태스크 학습 기반인 멀티 레이어 포인터 네트워크를 이용한 한국어 의존 구문 분석 모델을 제안한다. 멀티 태스크 학습 모델은 어절 간의 의존 관계와 의존 레이블 정보를 동시에 구하여 의존 구문 분석을 수행한다. 실험 결과, 본 논문에서 제안한 모델이 기존 한국어 의존 구문 분석 연구들 보다 좋은 UAS 92.16%, LAS 89.88%의 성능을 보였다.

  • PDF