• Title/Summary/Keyword: 한국어 의미 분석

Search Result 484, Processing Time 0.021 seconds

Twitter Issue Tracking System by Topic Modeling Techniques (토픽 모델링을 이용한 트위터 이슈 트래킹 시스템)

  • Bae, Jung-Hwan;Han, Nam-Gi;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.109-122
    • /
    • 2014
  • People are nowadays creating a tremendous amount of data on Social Network Service (SNS). In particular, the incorporation of SNS into mobile devices has resulted in massive amounts of data generation, thereby greatly influencing society. This is an unmatched phenomenon in history, and now we live in the Age of Big Data. SNS Data is defined as a condition of Big Data where the amount of data (volume), data input and output speeds (velocity), and the variety of data types (variety) are satisfied. If someone intends to discover the trend of an issue in SNS Big Data, this information can be used as a new important source for the creation of new values because this information covers the whole of society. In this study, a Twitter Issue Tracking System (TITS) is designed and established to meet the needs of analyzing SNS Big Data. TITS extracts issues from Twitter texts and visualizes them on the web. The proposed system provides the following four functions: (1) Provide the topic keyword set that corresponds to daily ranking; (2) Visualize the daily time series graph of a topic for the duration of a month; (3) Provide the importance of a topic through a treemap based on the score system and frequency; (4) Visualize the daily time-series graph of keywords by searching the keyword; The present study analyzes the Big Data generated by SNS in real time. SNS Big Data analysis requires various natural language processing techniques, including the removal of stop words, and noun extraction for processing various unrefined forms of unstructured data. In addition, such analysis requires the latest big data technology to process rapidly a large amount of real-time data, such as the Hadoop distributed system or NoSQL, which is an alternative to relational database. We built TITS based on Hadoop to optimize the processing of big data because Hadoop is designed to scale up from single node computing to thousands of machines. Furthermore, we use MongoDB, which is classified as a NoSQL database. In addition, MongoDB is an open source platform, document-oriented database that provides high performance, high availability, and automatic scaling. Unlike existing relational database, there are no schema or tables with MongoDB, and its most important goal is that of data accessibility and data processing performance. In the Age of Big Data, the visualization of Big Data is more attractive to the Big Data community because it helps analysts to examine such data easily and clearly. Therefore, TITS uses the d3.js library as a visualization tool. This library is designed for the purpose of creating Data Driven Documents that bind document object model (DOM) and any data; the interaction between data is easy and useful for managing real-time data stream with smooth animation. In addition, TITS uses a bootstrap made of pre-configured plug-in style sheets and JavaScript libraries to build a web system. The TITS Graphical User Interface (GUI) is designed using these libraries, and it is capable of detecting issues on Twitter in an easy and intuitive manner. The proposed work demonstrates the superiority of our issue detection techniques by matching detected issues with corresponding online news articles. The contributions of the present study are threefold. First, we suggest an alternative approach to real-time big data analysis, which has become an extremely important issue. Second, we apply a topic modeling technique that is used in various research areas, including Library and Information Science (LIS). Based on this, we can confirm the utility of storytelling and time series analysis. Third, we develop a web-based system, and make the system available for the real-time discovery of topics. The present study conducted experiments with nearly 150 million tweets in Korea during March 2013.

Emoticon by Emotions: The Development of an Emoticon Recommendation System Based on Consumer Emotions (Emoticon by Emotions: 소비자 감성 기반 이모티콘 추천 시스템 개발)

  • Kim, Keon-Woo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.227-252
    • /
    • 2018
  • The evolution of instant communication has mirrored the development of the Internet and messenger applications are among the most representative manifestations of instant communication technologies. In messenger applications, senders use emoticons to supplement the emotions conveyed in the text of their messages. The fact that communication via messenger applications is not face-to-face makes it difficult for senders to communicate their emotions to message recipients. Emoticons have long been used as symbols that indicate the moods of speakers. However, at present, emoticon-use is evolving into a means of conveying the psychological states of consumers who want to express individual characteristics and personality quirks while communicating their emotions to others. The fact that companies like KakaoTalk, Line, Apple, etc. have begun conducting emoticon business and sales of related content are expected to gradually increase testifies to the significance of this phenomenon. Nevertheless, despite the development of emoticons themselves and the growth of the emoticon market, no suitable emoticon recommendation system has yet been developed. Even KakaoTalk, a messenger application that commands more than 90% of domestic market share in South Korea, just grouped in to popularity, most recent, or brief category. This means consumers face the inconvenience of constantly scrolling around to locate the emoticons they want. The creation of an emoticon recommendation system would improve consumer convenience and satisfaction and increase the sales revenue of companies the sell emoticons. To recommend appropriate emoticons, it is necessary to quantify the emotions that the consumer sees and emotions. Such quantification will enable us to analyze the characteristics and emotions felt by consumers who used similar emoticons, which, in turn, will facilitate our emoticon recommendations for consumers. One way to quantify emoticons use is metadata-ization. Metadata-ization is a means of structuring or organizing unstructured and semi-structured data to extract meaning. By structuring unstructured emoticon data through metadata-ization, we can easily classify emoticons based on the emotions consumers want to express. To determine emoticons' precise emotions, we had to consider sub-detail expressions-not only the seven common emotional adjectives but also the metaphorical expressions that appear only in South Korean proved by previous studies related to emotion focusing on the emoticon's characteristics. We therefore collected the sub-detail expressions of emotion based on the "Shape", "Color" and "Adumbration". Moreover, to design a highly accurate recommendation system, we considered both emotion-technical indexes and emoticon-emotional indexes. We then identified 14 features of emoticon-technical indexes and selected 36 emotional adjectives. The 36 emotional adjectives consisted of contrasting adjectives, which we reduced to 18, and we measured the 18 emotional adjectives using 40 emoticon sets randomly selected from the top-ranked emoticons in the KakaoTalk shop. We surveyed 277 consumers in their mid-twenties who had experience purchasing emoticons; we recruited them online and asked them to evaluate five different emoticon sets. After data acquisition, we conducted a factor analysis of emoticon-emotional factors. We extracted four factors that we named "Comic", Softness", "Modernity" and "Transparency". We analyzed both the relationship between indexes and consumer attitude and the relationship between emoticon-technical indexes and emoticon-emotional factors. Through this process, we confirmed that the emoticon-technical indexes did not directly affect consumer attitudes but had a mediating effect on consumer attitudes through emoticon-emotional factors. The results of the analysis revealed the mechanism consumers use to evaluate emoticons; the results also showed that consumers' emoticon-technical indexes affected emoticon-emotional factors and that the emoticon-emotional factors affected consumer satisfaction. We therefore designed the emoticon recommendation system using only four emoticon-emotional factors; we created a recommendation method to calculate the Euclidean distance from each factors' emotion. In an attempt to increase the accuracy of the emoticon recommendation system, we compared the emotional patterns of selected emoticons with the recommended emoticons. The emotional patterns corresponded in principle. We verified the emoticon recommendation system by testing prediction accuracy; the predictions were 81.02% accurate in the first result, 76.64% accurate in the second, and 81.63% accurate in the third. This study developed a methodology that can be used in various fields academically and practically. We expect that the novel emoticon recommendation system we designed will increase emoticon sales for companies who conduct business in this domain and make consumer experiences more convenient. In addition, this study served as an important first step in the development of an intelligent emoticon recommendation system. The emotional factors proposed in this study could be collected in an emotional library that could serve as an emotion index for evaluation when new emoticons are released. Moreover, by combining the accumulated emotional library with company sales data, sales information, and consumer data, companies could develop hybrid recommendation systems that would bolster convenience for consumers and serve as intellectual assets that companies could strategically deploy.

A study on the Greeting's Types of Ganchal in Joseon Dynasty (간찰(簡札)의 안부인사(安否人事)에 대한 유형(類型) 연구(硏究))

  • Jeon, Byeong-yong
    • (The)Study of the Eastern Classic
    • /
    • no.57
    • /
    • pp.467-505
    • /
    • 2014
  • I am working on a series of Korean linguistic studies targeting Ganchal(old typed letters in Korea) for many years and this study is for the typology of the [Safety Expression] as the part. For this purpose, [Safety Expression] were divided into a formal types and semantic types, targeting the Chinese Ganchal and Hangul Ganchal of modern Korean Language time(16th century-19th century). Formal types can be divided based on whether Normal position or not, whether Omission or not, whether the Sending letter or not, whether the relationship of the high and the low or not. Normal position form and completion were made the first type which reveal well the typicality of the [Safety Expression]. Original position while [Own Safety] omitted as the second type, while Original position while [Opposite Safety] omitted as the third type, Original position while [Safety Expression] omitted as the fourth type. Inversion type were made as the fifth type which is the most severe solecism in [Safety Expression]. The first type is refers to Original position type that [Opposite Safety] precede the [Own Safety] and the completion type that is full of semantic element. This type can be referred to most typical and normative in that it equipped all components of [Safety Expression]. A second type is that [Safety Expression] is composed of only the [Opposite Safety]. This type is inferior to the first type in terms of set pattern, it is never outdone when it comes to the appearance frequency. Because asking [Opposite Safety] faithfully, omitting [Own Safety] dose not greatly deviate politeness and easy to write Ganchal, it is utilized. The third type is the Original position type showing the configuration of the [Opposite Safety]+Own Safety], but [Opposite Safety] is omitted. The fourth type is a Original position type showing configuration of the [Opposite Safety+Own Safety], but [Safety Expression] is omitted. This type is divided into A ; [Safety Expression] is entirely omitted and B ; such as 'saving trouble', the conventional expression, replace [Safety Expression]. The fifth type is inversion type that shown to structure of the [Own Safety+Opposite Safety], unlike the Original position type. This type is the most severe solecism type and real example is very rare. It is because let leading [Own Safety] and ask later [Opposite Safety] for face save is offend against common decency. In addition, it can be divided into the direct type that [Opposite Safety] and [Own Safety] is directly connected and indirect type that separate into the [story]. The semantic types of [Safety Expression] can be classified based on whether Sending letter or not, fast or slow, whether intimate or not, and isolation or not. For Sending letter, [Safety Expression] consists [Opposite Safety(Climate+Inquiry after health+Mental state)+Own safety(status+Inquiry after health+Mental state)]. At [Opposite safety], [Climate] could be subdivided as [Season] information and [Climate(weather)] information. Also, [Mental state] is divided as receiver's [Family Safety Mental state] and [Individual Safety Mental state]. In [Own Safety], [Status] is divided as receiver's traditional situation; [Recent condition] and receiver's ongoing situation; [Present condition]. [Inquiry after health] is also subdivided as receiver's [Family Safety] and [Individual Safety], [Safety] is as [Family Safety] and [Individual Safety]. Likewise, [Inquiry after health] or [Safety] is usually used as pairs, in dimension of [Family] and [Individual]. This phenomenon seems to have occurred from a big family system, which is defined as taking care of one's parents or grand parents. As for the Written Reply, [Safety Expression] consists [Opposite Safety (Reception+Inquiry after health+Mental state)+Own safety(status+Inquiry after health+Mental state)], and only in [Opposite safety], a difference in semantic structure happens with Sending letter. In [Opposite Safety], [Reception] is divided as [Letter] which is Ganchal that is directly received and [Message], which is news that is received indirectly from people. [Safety] is as [Family Safety] and [Individual Safety], [Mental state] also as [Family Safety Mental state] and [Individual Safety Mental state].

Comparison of vowel lengths of articles and monosyllabic nouns in Korean EFL learners' noun phrase production in relation to their English proficiency (한국인 영어학습자의 명사구 발화에서 영어 능숙도에 따른 관사와 단음절 명사 모음 길이 비교)

  • Park, Woojim;Mo, Ranm;Rhee, Seok-Chae
    • Phonetics and Speech Sciences
    • /
    • v.12 no.3
    • /
    • pp.33-40
    • /
    • 2020
  • The purpose of this research was to find out the relation between Korean learners' English proficiency and the ratio of the length of the stressed vowel in a monosyllabic noun to that of the unstressed vowel in an article of the noun phrases (e.g., "a cup", "the bus", etcs.). Generally, the vowels in monosyllabic content words are phonetically more prominent than the ones in monosyllabic function words as the former have phrasal stress, making the vowels in content words longer in length, higher in pitch, and louder in amplitude. This study, based on the speech samples from Korean-Spoken English Corpus (K-SEC) and Rated Korean-Spoken English Corpus (Rated K-SEC), examined 879 English noun phrases, which are composed of an article and a monosyllabic noun, from sentences which are rated on 4 levels of proficiency. The lengths of the vowels in these 879 target NPs were measured and the ratio of the vowel lengths in nouns to those in articles was calculated. It turned out that the higher the proficiency level, the greater the mean ratio of the vowels in nouns to the vowels in articles, confirming the research's hypothesis. This research thus concluded that for the Korean English learners, the higher the English proficiency level, the better they could produce the stressed and unstressed vowels with more conspicuous length differences between them.