• 제목/요약/키워드: 한국어 의미역 정의

검색결과 15건 처리시간 0.017초

도메인 적응 기술을 이용한 한국어 의미역 인식 (Korean Semantic Role Labeling Using Domain Adaptation Technique)

  • 임수종;배용진;김현기;나동렬
    • 정보과학회 논문지
    • /
    • 제42권4호
    • /
    • pp.475-482
    • /
    • 2015
  • 높은 성능의 의미역 인식 시스템의 개발을 위해서는 대상 도메인에 대한 대량의 수동 태깅 학습 데이터가 필요하다. 그러나 충분한 크기의 의미역 인식용 학습 데이터는 오직 소수의 도메인에서만 존재한다. 소스 도메인의 시스템을 상대적으로 매우 작은 학습 데이터를 가진 다른 도메인에 적용할 경우 한국어 의미역 인식 기술은 15% 정도 성능 하락이 발생한다. 이러한 도메인 변경에서의 성능 하락 현상을 최소화하기 위해 본 논문에서는 2 가지 기법을 제시한다. 첫째, 도메인 적응 방법론의 하나인 Prior 모델에 기반하여 개발된 한국어 의미역 인식 시스템을 위한 도메인 적응 알고리즘을 제안한다. 둘째, 크기가 작은 타겟 도메인 데이터를 이용할 때 데이터 희귀 문제의 감소를 위해 소스 도메인 데이터 이용시 보다 단순화된 형태소 태그와 구문 태그 자질을 사용할 것을 제안한다. 뉴스 도메인에서 개발된 시스템의 위키피디아 도메인에의 적용과 관련하여 다른 연구의 도메인 적응 기술과 우리가 제안한 방법을 비교 실험하였다. 우리의 두 가지 방법을 같이 사용할 때 더 높은 성능을 달성하는 것을 관찰하였다. 우리 시스템은 F1-score 64.3% 성능으로서 기존의 다른 도메인 적응 기술들과 비교하여 2.4~3.1% 더 높은 성능을 가지는 것으로 관찰되었다.

시소러스와 술어 패턴을 이용한 의미역 부착 한국어 하위범주화 사전의 구축 (Constructing a Korean Subcategorization Dictionary with Semantic Roles using Thesaurus and Predicate Patterns)

  • 양승현;김영섬;우요섭;윤덕호
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제6권3호
    • /
    • pp.364-372
    • /
    • 2000
  • 하위범주화는 보어의 어휘 개념이 명시된 술어와 보어간 의존 관계를 정의하는 언어 정보로서 구문 및 의미 분석 등에 폭넓게 활용될 수 있는 기반 언어 자원이라는 데에 그 중요성이 있다. 본 논문에서는 표층문에서 통상 격표지로 표현되는 구문적 의존 관계뿐만 아니라, 보어가 갖는 의미역 정보가 부착되어 있으며 시소러스 개념 분류 체계와 연동 가능한 한국어 술어의 하위범주화 사전의 구축에 대해 설명하고 있다. 본 논문에서는 하위범주화 사전의 의미역 표현을 위해 총 25개의 의미역을 설정하고 있다. 이 의미역은 표층 격표지와 직접 연관되어 있기 때문에 통사적인 분석으로부터 직접 의미역 정보를 추출해서 의미 구조의 해석에 이용하는 것이 가능하다. 또한 명사 보어가 갖는 개념의 표현을 위해 상ㆍ하위어 관계를 갖는 12만 어휘 규모의 시소러스를 이용하고 있으며, 술어의 의존 관계 표현을 위해 동사, 형용사에 대해 각각 47, 17 개의 하위범주화 패턴을 이용하고 있다. 실용적 규모의 시소러스를 이용함으로써 문장에 나타난 명사의 시소러스 개념을 그대로 하위범주화 사전에 적용시켜 의미 정합 여부를 판단할 수 있는 실질적인 선택제약 체계를 구성할 수 있었고, 표층 격표지에 기초한 표준화된 술어 패턴을 이용함으로써 의미역의 결정 등에서 야기될 수 있는 비일관성을 방지하고 구축에 드는 비용을 절감할 수 있었다. 이상과 같은 방법으로 말뭉치에서 추출한 고빈도 술어 13,000 여개에 대해 하위범주화 사전을 구축하였으며, 적용 범위 평가 실험에 의하면 이 하위범주화 사전은 말뭉치에서 발견된 술어의 72.7%에 대해 하위범주화 정보를 제공할 수 있음을 확인하였다.

  • PDF

BiLSTM 모델과 형태소 자질을 이용한 서술어 인식 방법 (Predicate Recognition Method using BiLSTM Model and Morpheme Features)

  • 남충현;장경식
    • 한국정보통신학회논문지
    • /
    • 제26권1호
    • /
    • pp.24-29
    • /
    • 2022
  • 정보 추출 및 질의응답 시스템 등 다양한 자연어 처리 분야에서 사용되는 의미역 결정은 주어진 문장과 서술어에 대해 서술어와 연관성 있는 논항들의 관계를 파악하는 작업이다. 입력으로 사용되는 서술어는 형태소 분석과 같은 어휘적 분석 결과를 이용하여 추출하지만, 한국어 특성상 문장의 의미에 따라 다양한 패턴을 가질 수 있기 때문에 모든 언어학적 패턴을 만들 수 없다는 문제점이 있다. 본 논문에서는 사전에 언어학적 패턴을 정의하지 않고 신경망 모델과 사전 학습된 임베딩 모델 및 형태소 자질을 추가한 한국어 서술어를 인식하는 방법을 제안한다. 실험은 모델의 변경 가능한 파라미터에 대한 성능 비교, 임베딩 모델과 형태소 자질의 사용 유무에 따른 성능 비교를 하였으며, 그 결과 제안한 신경망 모델이 92.63%의 성능을 보였음을 확인하였다.

한국어 분석의 중의성 해소를 위한 하위범주화 사전 구축 (Development of Subcategorization Dictionary for the Disambiguation Korean Language Analysis)

  • 이수선;박현재;우요섭
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1999년도 제11회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.257-264
    • /
    • 1999
  • 자연언어 처리에 있어 문장의 성분 구조를 파악하는 통사적 해석에서는 애매성 있는 결과가 많이 생성된다. 한국어의 경우 어순 등의 통사적 특성뿐 아니라 상황과 의미, 문맥이 문장의 분석에 더 중요한 역할을 하기 때문에 문맥 자유 문법에 의한 접근 방법만으로는 중의적 구조의 해결이 어렵다. 이는 또한 의미 분석시 애매성을 증가시키는 원인이 된다. 이러한 통사적, 의미적 중의성 해결을 위해 용언 중심의 하위범주화 사전을 구축하였다. 본 논문에서는 용언에 따라 제한될 수 있는 하위범주 패턴을 정의하고 패턴에 따라 하위범주 사전을 구축하였다. 하위범주화 사전에는 명사의 시소러스와 정합하여 보어를 선택 제한(Selectional Restriction)할 수 있도록 용언과 명사와의 의미적 연어 관계에 따라 의미마커를 부여했다. 말뭉치를 통해 수집된 용언 12,000여개를 대상으로 25,000여개의 하위범주 패턴을 구축하였고 이렇게 구축한 하위범주화 사전이 120,000여 명사에 대한 의미를 갖고 있는 계층 시소러스 의미 사전과 연동하도록 하였다. 또한 논문에서 구현된 하위범주화 사전이 구문과 어휘의 중의성을 어느 정도 해소하는지 확인하기 위해 반자동적으로 의미 태깅(Sense Tagging)된 2만여 문장의 말뭉치를 통해 검증 작업을 수행하고, 의존관계와 어휘의 의미를 포함하고 있는 말뭉치에 하위범주 패턴이 어느정도 정합되는지를 분석하여, 하위범주 패턴과 말뭉치의 의존관계만 일치하는 경우와 어휘의 의미까지 일치하는 경우에 대해 평가한다. 이 과정에서 하위범주 패턴에 대한 빈도 정보나, 연어 정보를 수집하여 데이터베이스에 포함시키고, 각 의미역과 용언의 통계적 공기 정보 등을 추출하는 방법도 제시하고자 한다.을 입증하였다.적응에 문제점을 가지기도 하였다. 본 연구에서는 그 동안 계속되어 온 한글과 한잔의 사용에 관한 논쟁을 언어심리학적인 연구 방법을 통해 조사하였다. 즉, 글을 읽는 속도, 글의 의미를 얼마나 정확하게 이해했는지, 어느 것이 더 기억에 오래 남는지를 측정하여 어느 쪽의 입장이 옮은 지를 판단하는 것이다. 실험 결과는 문장을 읽는 시간에서는 한글 전용문인 경우에 월등히 빨랐다. 그러나. 내용에 대한 기억 검사에서는 국한 혼용 조건에서 더 우수하였다. 반면에, 이해력 검사에서는 천장 효과(Ceiling effect)로 두 조건간에 차이가 없었다. 따라서, 본 실험 결과에 따르면, 글의 읽기 속도가 중요한 문서에서는 한글 전용이 좋은 반면에 글의 내용 기억이 강조되는 경우에는 한자를 혼용하는 것이 더 효율적이다.이 높은 활성을 보였다. 7. 이상을 종합하여 볼 때 고구마 끝순에는 페놀화합물이 다량 함유되어 있어 높은 항산화 활성을 가지며, 아질산염소거능 및 ACE저해활성과 같은 생리적 효과도 높아 기능성 채소로 이용하기에 충분한 가치가 있다고 판단된다.등의 관련 질환의 예방, 치료용 의약품 개발과 기능성 식품에 효과적으로 이용될 수 있음을 시사한다.tall fescue 23%, Kentucky bluegrass 6%, perennial ryegrass 8%) 및 white clover 23%를 유지하였다. 이상의 결과를 종합할 때, 초종과 파종비율에 따른 혼파초지의 건물수량과 사료가치의 차이를 확인할 수 있었으며, 레드 클로버 + 혼파 초지가 건물수량과 사료가치를 높이는데 효과적이었다.\ell}$ 이었으며 , yeast extract 첨가(添加)하여 배양시(培養時)는 yeast extract

  • PDF

음절 복원 규칙과 형태소 분석을 이용한 음성인식 후처리 (Post-Processing of Voice Recognition Using Phonologic Rules and Morphologic analysis)

  • 서상현;김재홍;김해진;김미진;이상조
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1997년도 제9회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.495-499
    • /
    • 1997
  • 컴퓨터의 사용이 보편화됨에 따라 컴퓨터와 사용자 사이의 쉽고 자연스러운 의사 소통을 위한 자연어 인터페이스에 대한 연구가 활발히 진행되고 있다. 이 중에서 특히, 음성인식 분야는 음성명령, 받아쓰기 시스템 등 일반적인 컴퓨터 사용자의 요구를 충족시켜 줄 수 있는 분야로 주목을 받고 있다. 그러나 음성인식은 인식 자체만으로는 인식률에 한계가 있으며, 인식 결과를 향상시키기 위해서는 후처리 단계가 필요하다. 본 논문에서는 음성 인식의 성능을 향상시키기 위해 음성 인식의 결과로 들어온 연속된 한국어 음성을 올바른 음절로 복원시켜 주는 시스템을 구현하였다. 이 시스템에서는 어절단위의 연속된 한국어 음성을 입력으로 받아 한국어 발음 규칙을 역으로 적용하여 원래의 음절로 복원시키고, 형태소 분석기를 이용하여 복원된 음절이 올바른지를 확인하고 수정한다. 초등학교 교과서에 나오는 문장을 대상으로 본 시스템의 성능을 실험한 결과, 90.42%의 복원율을 나타내었다. 현재 정확하게 복원이 되지 않는 것 중에는 동음이의어가 차지하는 비중이 크며, 이 문제는 구문분석이나 의미분석을 이용하여 어느 정도 개선할 수 있을 것으로 보인다.

  • PDF