• Title/Summary/Keyword: 한국어 음소

Search Result 214, Processing Time 0.023 seconds

An English-to-Korean Transliteration Model based on Character and Pronunciation (글자 및 발음 기반 영-한 음차표기 모델)

  • 오종훈;배선미;최기선
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.925-927
    • /
    • 2004
  • 음차표기란 외국어의 발음을 자국어로 표기하는 것으로 정의된다. 영-한 자동 음차표기 방법에는 직접방식, 피봇방식, 혼합방식이 있다. 기존의 영-한 음차표기 연구들은 직접방식에 기반한 연구들이 대부분이었다. 하지만, 음차표기는 직접방식에서 사용하는 단순한 자소 대 자소변환 작업이라기보다는 자소의 음성적 변환 작업이라고 할 수 있다. 따라서 자소뿐만 아니라 음소 등 음성적 정보가 매우 중요하다. 본 논문에서는 이러한 특성을 이용하여 자소 정보뿐만 아니라 음소 정보를 이용한 음차표기 기법을 제안한다. 주어진 자소와 음소 및 자소와 음소의 문맥정보를 이용하여 한국어 음차표기를 생성하는 본 논문의 기법은 약 60%의 단어정확도를 나타내었다.

  • PDF

A Study on Word Juncture Modeling for Continuous Speech Recognition of Korean Language (한국어 연속음성 인식을 위한 단어 결합 모델링에 관한 연구)

  • Choi, In-Jeong;Un, Chong-Kwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.5
    • /
    • pp.24-31
    • /
    • 1994
  • In this paper, we study continuous speech recognition of Korean language using acoustic models of word juncture coarticulation. To alleviate the performance degradation due to coarticulation problems, we use context-dependent units that model inter-word transitions in addition to intra-word transitions. In all cases the initial phone of each word has to be specified for each possible final phone of the previous word similarly for the final phone of each word. To improve the robustness of the HMM parameters, the covariance matrix is smoothed. We also use position-dependent units to improve the discriminative power between units. Simulation results show that when the improved models of word juncture coarticulation are used. the recognition performance is considerably improved compared to the baseline system using only intra-word units.

  • PDF

An Analysis on Phone-Like Units for Korean Continuous Speech Recognition in Noisy Environments (잡음환경하의 연속 음성인식을 위한 유사음소단위 분석)

  • Shen Guang-Hu;Lim Soo-Ho;Seo Jun-Bae;Kim Joo-Gon;Jung Ho-Youl;Chung Hyun-Yeol
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.123-126
    • /
    • 2004
  • 본 논문은 잡음환경 하에서의 효율적인 문맥의존 음향 모델 구성에 대한 기초연구로서 잡음환경 하에서의 유사 음소단위 수에 따른 연속 음성인식 성능을 비교, 평가한 결과에 대한 보고이다. 기존의 연구[1,2]로부터 연속음성 인식의 경우 문맥종속모델은 변이음을 고려한 39유사음소를 이용한 경우가 48유사음소를 이용하는 것보다 더 좋은 인식성능을 나타냄을 알 수 있었다. 이 연구 결과를 바탕으로 본 연구에서는 잡음환경에서도 효율적인 문맥 의존 음향모델을 구성하기 위한 기초 연구를 수행하였다. 다양한 잡음환경을 고려하기 위해 White, Pink, LAB 잡음을 신호 대 잡음비(Signal to Noise Ratio) 5dB, 10dB, 15dB 레벨로 음성에 부가한 후 각 유사음소단위 수에 따른 연속음성인식 실험을 수행하였다. 그 결과, 39유사음소를 이용한 경우가 48유사음소를 이용한 경우보다 clear 환경인 경우에 약 $7\%$$17\%$ 향상된 단어인식률과 문장 인식률을 얻을 수 있었으며, 각 잡음환경에서도 39유사음소를 이용한 경우가 48유사음소를 이용한 경우보다 평균 적으로 $17\%$$28\%$ 향상된 단어인식률과 문장인식률을 얻을 수 있어 39유사음소 단위가 한국어 연속음성인식에 더 적합하고 잡음환경에서도 유효함을 확인할 수 있었다.

  • PDF

A Study on the Korean Text-to-Speech Conversion Using the Formant Synthesizer(I) (포만트 합성방식에 의한 한국어 문자/음성 변환에 관한 연구 (I))

  • 김민년
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.119-122
    • /
    • 1995
  • 음소단위의 포만트 합성방식을 이용하여 한국어의 규칙합성에 대해 시험하였다. 포만트 합성방식으로는 Klatt가 제안한 직/병렬 합성기를 수정하여 사용하였으며, 운율 정보를 나타내는 피치값의 제어는 Fujisaki 모델을 이용하였다. 합성에 사용되는 각 파라미터들이 합성음의 음질 및 파형에 미치는 영향을 분석할 수 있도록 합성 파라미터와 음성파형 및 스펙트로그램을 화면에 나타내고 마우스를 이용하여 파라미터 값을 사용자가 적절히 변경한 후 합성할 수 있는 포만트 방식의 합성 Tool을 개발하였으며, 이를 이용하여 한국어 문자/음성변환 시스템을 지속적으로 연구하고자 한다.

  • PDF

Diphone-based Intonation and VoiceXML document Generation using Multi-dimensional Linguistic Information (다양한 언어 정보를 이용한 음소 단위 억양 및 VoiceXML 문서 생성)

  • Lee, Hwa-Jin;Park, Jong-C.
    • Annual Conference on Human and Language Technology
    • /
    • 2002.10e
    • /
    • pp.69-76
    • /
    • 2002
  • 최근 음성 합성 과정에서 화자의 의도를 가장 많이 반영하는 언어 정보인 문맥 정보를 사용하려는 시도가 이루어지고 있으나 문맥 정보를 적은 비중으로 사용하기 때문에 자연성 향상에 큰 도움을 주지 못하고 있다. 본 연구에서는 구문 정보, 의미 정보를 억양 생성 과정에 이용함과 동시에 문맥 정보와 음성 정보와의 관계를 음성 데이터를 바탕으로 분석하여 다양한 문맥 정보를 음성 합성 과정에 반영하는 방법을 제안한다. 또한 한국어에서 나타나는 다양한 억양 곡선 유형을 형태소를 이용하여 의다 효율적으로 처리할 수 있는 방법을 제안하여 자연스러운 억양 생성 시스템을 구현하고 시스템의 결과를 음소 단위 억양 생성기와 VoiceXML을 이용하여 적용시켜보고 결과를 논의한다.

  • PDF

Speech Recognition on Korean Monosyllable using Phoneme Discriminant Filters (음소판별필터를 이용한 한국어 단음절 음성인식)

  • Hur, Sung-Phil;Chung, Hyun-Yeol;Kim, Kyung-Tae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.31-39
    • /
    • 1995
  • In this paper, we have constructed phoneme discriminant filters [PDF] according to the linear discriminant function. These discriminant filters do not follow the heuristic rules by the experts but the mathematical methods in iterative learning. Proposed system. is based on the piecewise linear classifier and error correction learning method. The segmentation of speech and the classification of phoneme are carried out simutaneously by the PDF. Because each of them operates independently, some speech intervals may have multiple outputs. Therefore, we introduce the unified coefficients by the output unification process. But sometimes the output has a region which shows no response, or insensitive. So we propose time windows and median filters to remove such problems. We have trained this system with the 549 monosyllables uttered 3 times by 3 male speakers. After we detect the endpoint of speech signal using threshold value and zero crossing rate, the vowels and consonants are separated by the PDF, and then selected phoneme passes through the following PDF. Finally this system unifies the outputs for competitive region or insensitive area using time window and median filter.

  • PDF

A Study on the Dynamic Feature of Phoneme for Word Recognition (단어인식을 위한 음소의 동적 특징에 관한 검토)

  • 김주곤
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1997.06a
    • /
    • pp.35-39
    • /
    • 1997
  • 본 연구에서는 음소를 인식의 기본단위로 하는 한국어 단어인식 시스템의 인식정도를 개선하기 이해 각 음소의 시간방향의 정보를 포함하고 있는 동적특징인 회귀계수와 K-L(Karhunen-Loeve)변환으로 얻은 특징파라미터(이하 K-L계수라 함)를 이용하여 음소인식과 단어인식 실험을 수행한 결과 그 유효성을 확인하였다. 이를 위해 먼저 파열음을 대상으로 정적 특징과 파라미터인 멜-켑스트럼(Mel-Cepstrum)과 동적 특징 파라미터인 회귀계수(Regressive Coefficient) 와 K-L 계수(Karhunen-Loeve Coefficient)를 추출하여 음소 인식실험을 수행하였다. 그 결과 멜-켑스트럼을 사용한 경우 39.84%, 회귀계수를 사용한 경우 48.52%, K-L계수를 사용한 경우 52.40%의 인식률을 얻었다. 이를 참고로 각각의 특징 파라미터를 결합하여 인식실험한 결과 멜-켑스트럼과 K-L계수를 사용한 경우 47.17%,멜 -켑스트럼과 회귀계수의 경우 60.11%,K-L계수와 회귀계수의 경우 60.35%, 멜-켑스트럼과 K-L계수 , 회귀계수를 사용한 경우 58.13%를 인식률을 얻어 동적특징인 K-L 계수와 회귀계수를 사용한 경우와 멜-켑스트럼과 회귀계수를 사용한 경우가 높은 인식률을 보였으며 이를 단어로 확장하여 인식실험을 수행한 결과 기존의 특징 파라미터를 이용한 경우보다 높은 인식률을 얻어 동적 파라미터의 유효성을 확인하였다

  • PDF

Performance of Korean spontaneous speech recognizers based on an extended phone set derived from acoustic data (음향 데이터로부터 얻은 확장된 음소 단위를 이용한 한국어 자유발화 음성인식기의 성능)

  • Bang, Jeong-Uk;Kim, Sang-Hun;Kwon, Oh-Wook
    • Phonetics and Speech Sciences
    • /
    • v.11 no.3
    • /
    • pp.39-47
    • /
    • 2019
  • We propose a method to improve the performance of spontaneous speech recognizers by extending their phone set using speech data. In the proposed method, we first extract variable-length phoneme-level segments from broadcast speech signals, and convert them to fixed-length latent vectors using an long short-term memory (LSTM) classifier. We then cluster acoustically similar latent vectors and build a new phone set by choosing the number of clusters with the lowest Davies-Bouldin index. We also update the lexicon of the speech recognizer by choosing the pronunciation sequence of each word with the highest conditional probability. In order to analyze the acoustic characteristics of the new phone set, we visualize its spectral patterns and segment duration. Through speech recognition experiments using a larger training data set than our own previous work, we confirm that the new phone set yields better performance than the conventional phoneme-based and grapheme-based units in both spontaneous speech recognition and read speech recognition.

Implementation of Korean Vowel 'ㅏ' Recognition based on Common Feature Extraction of Waveform Sequence (파형 시퀀스의 공통 특징 추출 기반 모음 'ㅏ' 인식 구현)

  • Roh, Wonbin;Lee, Jongwoo
    • KIISE Transactions on Computing Practices
    • /
    • v.20 no.11
    • /
    • pp.567-572
    • /
    • 2014
  • In recent years, computing and networking technologies have been developed, and the communication equipments have become smaller and the mobility has increased. In addition, the demand for easily-operated speech recognition has increased. This paper proposes method of recognizing the Korean phoneme 'ㅏ'. A phoneme is the smallest unit of sound, and it plays a significant role in speech recognition. However, the precise recognition of the phonemes has many obstacles since it has many variations in its pronunciation. This paper proposes a simple and efficient method that can be used to recognize a Korean vowel 'ㅏ'. The proposed method is based on the common features that are extracted from the 'ㅏ' waveform sequences, and this is simpler than when using the previous complex methods. The experimental results indicate that this method has a more than 90 percent accuracy in recognizing 'ㅏ'.

Korean Word Recognition Using Diphone- Level Hidden Markov Model (Diphone 단위 의 hidden Markov model을 이용한 한국어 단어 인식)

  • Park, Hyun-Sang;Un, Chong-Kwan;Park, Yong-Kyu;Kwon, Oh-Wook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.14-23
    • /
    • 1994
  • In this paper, speech units appropriate for recognition of Korean language have been studied. For better speech recognition, co-articulatory effects within an utterance should be considered in the selection of a recognition unit. One way to model such effects is to use larger units of speech. It has been found that diphone is a good recognition unit because it can model transitional legions explicitly. When diphone is used, stationary phoneme models may be inserted between diphones. Computer simulation for isolated word recognition was done with 7 word database spoken by seven male speakers. Best performance was obtained when transition regions between phonemes were modeled by two-state HMM's and stationary phoneme regions by one-state HMM's excluding /b/, /d/, and /g/. By merging rarely occurring diphone units, the recognition rate was increased from $93.98\%$ to $96.29\%$. In addition, a local interpolation technique was used to smooth a poorly-modeled HMM with a well-trained HMM. With this technique we could get the recognition rate of $97.22\%$ after merging some diphone units.

  • PDF