• Title/Summary/Keyword: 한국어 음소

Search Result 214, Processing Time 0.023 seconds

Text-to-Speech System Using Logatom (Logatom을 사용한 문서음성변환 시스템)

  • Cho Kwansun;Lee Chulhee
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.7-10
    • /
    • 1999
  • 본 논문에서는 logatom 기반 무제한 한국어 TTS 시스템 구현을 제안한다. 이를 위하여 한국어를 대표할 만한 문서코퍼스를 선택하여 분석하고 이를 바탕으로 합성에 필요한 logatom을 설계한다. 일반적으로 음성코퍼스를 통해 음성세그먼트를 추출하여 접속에 기반한 TTS 시스템에서는 음성세그먼트를 의미있는 단어 또 는 어절로부터 추출한다. 하지만 음성세그먼트 추출시 고려되는 사항은 합성단위에 기초한 음소간의 결합형태이므로 본 논문에서는 음성세그먼트 추출을 위하여 무의미한 음소열인 logatom을 설계한다. Logatom은 문장 세그먼트의 어절내 위치와 문서코퍼스 분석 결과 얻어진 음소간의 결합형태를 기반으로 설계된다. 제안된 시스템의 합성음질을 평가하기 위하여 CVC 기반 logatom을 사용하여 임의의 문장을 합성해 본 결과 대부분의 음성세그먼트 접속이 자음에서 이루어지고 어절의 위치를 고려한 logatom 설계로 인하여 어절 내에서는 비교적 자연스러운 합성음을 얻을 수 있었다.

  • PDF

An English-to-Korean Transliteration Model based on Grapheme and Phoneme (자소 및 음소 정보를 이용한 영어-한국어 음차표기 모델)

  • Oh Jong-Hoon;Choi Key-Sun
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.4
    • /
    • pp.312-326
    • /
    • 2005
  • There has been increasing interest in English-to-Korean transliteration recently. Previous ,works are related to a direct method like $\rightarrow$Korean graphemes> and a pivot method like $\rightarrow$English phoneme$\rightarrow$Korean graphemes>. Though most of the previous works focus on the direct method, transliteration, however, is a phonetic process rather than an orthographic one. In this point of view, we present an English-Korean transliteration model using grapheme and phoneme information. Unlike the previous works, our method uses phonetic information such as phonemes and their context. Moreover, we also use graphemes corresponding to phonemes. Our method shows about $60\%$ word accuracy.

Automatic Phonetic Segmentation of Korean Speech Signal Using Phonetic-acoustic Transition Information (음소 음향학적 변화 정보를 이용한 한국어 음성신호의 자동 음소 분할)

  • 박창목;왕지남
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.8
    • /
    • pp.24-30
    • /
    • 2001
  • This article is concerned with automatic segmentation for Korean speech signals. All kinds of transition cases of phonetic units are classified into 3 types and different strategies for each type are applied. The type 1 is the discrimination of silence, voiced-speech and unvoiced-speech. The histogram analysis of each indicators which consists of wavelet coefficients and SVF (Spectral Variation Function) in wavelet coefficients are used for type 1 segmentation. The type 2 is the discrimination of adjacent vowels. The vowel transition cases can be characterized by spectrogram. Given phonetic transcription and transition pattern spectrogram, the speech signal, having consecutive vowels, are automatically segmented by the template matching. The type 3 is the discrimination of vowel and voiced-consonants. The smoothed short-time RMS energy of Wavelet low pass component and SVF in cepstral coefficients are adopted for type 3 segmentation. The experiment is performed for 342 words utterance set. The speech data are gathered from 6 speakers. The result shows the validity of the method.

  • PDF

Branch Algorithm for Phoneme Segmentation in Korean Speech Recognition System (한국어 음성인식 시스템에서 음소 경계 검출을 위한 Branch 알고리즘)

  • 서영완;한승진;장흥종;이정현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.357-359
    • /
    • 2000
  • 음소 단위로 구축된 음성 데이터는 음성인식, 합성 및 분석 등의 분야에서 매우 중요하다. 일반적으로 음소는 유성음과 무성음으로 구분되어 진다. 이러한 유성음과 무성음은 많은 특징적 차이가 있지만, 기존의 음소 경계추출 알고리즘은 이를 고려하지 않고 시간 축을 기준으로 이전 프레임과 매개변수 (스펙트럼) 비교만을 통하여 음소의 경계를 결정한다. 본 논문에서는 음소 경계 추출을 위하여 유성음과 무성음의 특징적 차이를 고려한 블록기반의 Branch 알고리즘을 설계하였다. Branch 알고리즘을 사용하기 위한 스펙트럼 비교 방법은 MFCC(Mel-Frequency Cepstrum Coefficient)를 기반으로 한 거리 측정법을 사용하였고, 유성음과 무성음의 구분은 포만트 주파수를 이용하였다. 실험 결과 3~4음절 고립단어를 대상으로 약 78%의 정확도를 얻을수 있었다.

  • PDF

A study on the Prosody Generation of Korean Sentences using Artificial Neural networks (인공 신경망을 이용한 한국어 문장단위 운율 발생에 관한 연구)

  • 이일구;민경중;강찬구;임운천
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.105-108
    • /
    • 1999
  • TTS(Text-To-Speech) 시스템 합성음성의 자연감을 개선하기 위해 하나의 언어에 대해 존재하는 운율 법칙을 정확히 구현해야 한다. 존재하는 운율 법칙을 추출하기 위해서는 방대한 분량의 언어 자료 구축이 필요하다. 그러나 이 방법은 존재하는 운율 현상이 포함된 언어자료에 대해 완벽한 운율을 파악할 수 없으므로 합성음성의 질을 좋게 할 수 없다. 본 논문은 한국어 음성의 운율을 학습하기 위해 2개의 인공 신경망을 제안한다. 하나의 신경망으로 문장의 각 음소에 대한 피치 변화를 학습시키는 것이며, 다른 하나는 에너지 변화를 학습하도록 하였다. 신경망은 BP 신경망을 이용하며 11개의 음소를 나타내기 위해 11개의 입력과, 중간 음소의 피치와 에너지 변화곡선을 근사하는 다항식 계수를 출력하도록 하였다. 신경망시스템의 학습과 평가에 앞서, 음성학적 균형잡힌 고립단어를 기반으로 의미있는 문장을 구성하였다. 문장을 남자 화자로 하여금 읽게 하고 녹음하여 음성 DB를 구축하였다. 음성 DB에 대해 각 음소의 운율 정보를 수집하여 신경망에 맞는 목표 패턴과 훈련 패턴을 작성하였다. 이 목표 패턴은 회귀분석을 통한 추세선을 이용해 피치와 에너지에 대한 2차 다항식계수로 구성하였다. 본 논문은 목표패턴에 맞는 신경망을 학습시켜 좋은 결과를 얻었다.

  • PDF

Automatic segmentation for continuous spoken Korean language recognition based on phonemic TDNN (음소단위 TDNN에 기반한 한국어 연속 음성 인식을 위한 데이타 자동분할)

  • Baac, Coo-Phong;Lee, Geun-Bae;Lee, Jong-Hyeok
    • Annual Conference on Human and Language Technology
    • /
    • 1995.10a
    • /
    • pp.30-34
    • /
    • 1995
  • 신경망을 이용하는 연속 음성 인식에서 학습이라 함은 인위적으로 분할된 음성 데이타를 토대로 진행되는 것이 지배적이었다. 그러나 분할된 음성데이타를 마련하기 위해서는 많은 시간과 노력, 숙련 등을 요구할 뿐만아니라 그 자체가 인식도메인의 변화나 확장을 어렵게 하는 하나의 요인 되기도 한다. 그래서 분할된 음성데이타의 사용을 가급적 피하고 그러면서도 성능을 떨어뜨리지 않는 신경망 학습법들이 나타나고 있다. 본 논문에서는 학습된 인식기를 이용하여 자동으로 한국어 음성데이타를 분할한 후 그 분할된 데이타를 이용하여 다시 인식기를 재학습시켜나가는 반복 과정을 소개하고자 한다. 여기에는 TDNN이 인식기로 사용되며 인식단위는 음소이다. 학습은 cross-validation 기법을 이용하여 제어된다.

  • PDF

Recognition of Korean Connected Digits in a Natural Spoken Dialog (대화체 음성에서의 한국어 연결 숫자음 인식)

  • 김중철;고종철;이정현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.377-379
    • /
    • 2000
  • 대화체 음성의 인식을 위해서는 음성 파형에 관한 음향학적인 연구뿐만 아니라 인식하려는 언어자체에 대한 언어학적인 연구를 필요로 한다. 본 논문에서는 숫자음의 언어학적인 요소를 고려하고, 포만트 주파수를 숫자음 검출과 숫자음 인식에 적용하는 방식을 제안한다. 시스템의 입력은 특정 질의에 대한 응답으로 대화체 문장이며, 끝점 추출 기술을 이용하여 고립단어로 분류한 후, 숫자음만을 검출해 내고, 검출된 숫자음을 인식하기 위해 포만트 주파수를 이용한다. 한국어 연결 숫자음 인식은 한국어 숫자음이 단음절로 구성된다는 점과 발음상의 조음효과 등으로 한계를 가지고 있다. 본 논문에서는 숫자음과 발성에 필요한 음소들을 추출하고, 숫자들을 모음에 따라 6개의 그룹으로 분류하여 인식의 범위를 좁히고, 포만트 주파수 정보와 음소 HMM 모델에 의한 두 단계에 걸친 인식을 수행함으로써 연결 숫자음 인식에 대한 성능을 향상시킨다.

  • PDF

Statistical Analysis of Korean Phonological Variations Using a Grapheme-to-phoneme System (발음열 자동 생성기를 이용한 한국어 음운 변화 현상의 통계적 분석)

  • 이경님;정민화
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.7
    • /
    • pp.656-664
    • /
    • 2002
  • We present a statistical analysis of Korean phonological variations using a Grapheme-to-Phoneme (GPT) system. The GTP system used for experiments generates pronunciation variants by applying rules modeling obligatory and optional phonemic changes and allophonic changes. These rules are derived form morphophonological analysis and government standard pronunciation rules. The GTP system is optimized for continuous speech recognition by generating phonetic transcriptions for training and constructing a pronunciation dictionary for recognition. In this paper, we describe Korean phonological variations by analyzing the statistics of phonemic change rule applications for the 60,000 sentences in the Samsung PBS Speech DB. Our results show that the most frequently happening obligatory phonemic variations are in the order of liaison, tensification, aspirationalization, and nasalization of obstruent, and that the most frequently happening optional phonemic variations are in the order of initial consonant h-deletion, insertion of final consonant with the same place of articulation as the next consonants, and deletion of final consonant with the same place of articulation as the next consonant's, These statistics can be used for improving the performance of speech recognition systems.

Allophonic Information Necessary for Speech Technology (음성공학을 위한 변이음 정보)

  • Lee, Ho-Young;Zhi, Min-Je;Kim, Young-Song
    • Annual Conference on Human and Language Technology
    • /
    • 1993.10a
    • /
    • pp.131-139
    • /
    • 1993
  • 하나의 음소는 보통 음성환경에 따라 여러 변이음으로 실현된다. 음성합성기로 한국어의 문장을 자연스럽게 합성해 내려고 할 때나 음성인식기가 한국어의 문장을 정확하게 인식하도록 개발하고자 할 때 변이음에 관한 정보는 필수적이다. 따라서 이 논문의 목적은 음성공학에 필요한 변이음 정보를 제공하는 것이다. 이 논문에서는 음성공학에 필요한 한국어의 주오 변이음 규칙들을 간단히 논의하고 몇몇 중요한 변이음들의 음향적 특징을 논의한다.

  • PDF